Joint Tensor Compression for Coupled Canonical Polyadic Decompositions

Jérémy E. Cohen, Rodrigo Cabral Farias, Pierre Comon

GIPSA-Lab, CNRS

EUSIPCO 2016

Introduction

Tensor Canonical Polyadic (CP) model

where $\mathbf{A} \in \mathbb{R}^{I \times R}$ spans the columns of \mathcal{T} unfolded in the 1st mode :

E.Cohen/C.Farias (GIPSA-Lab, CNRS)

Introduction

Tensor Canonical Polyadic (CP) model

where $\mathbf{B} \in \mathbb{R}^{J \times R}$ spans the columns of \mathcal{T} unfolded in the 2nd mode :

Introduction

Tensor Canonical Polyadic (CP) model

where $\mathbf{C} \in \mathbb{R}^{K \times R}$ spans the columns of \mathcal{T} unfolded in the 3rd mode :

 $\mathbf{C} \qquad \mathbf{T}_{(3)} \qquad \in span(\mathbf{C})$

E.Cohen/C.Farias (GIPSA-Lab, CNRS)

Tensor compression in the noiseless case

Another tensor decomposition : HOSVD

Tensor compression in the noisy case

In the noisy case :

où $\hat{\mathbf{U}}\mathbf{N}_1 = TSVD(\mathbf{T}_{(1)})$ $\hat{\mathbf{V}}\mathbf{N}_2 = TSVD(\mathbf{T}_{(2)})$ $\hat{\mathbf{W}}\mathbf{N}_3 = TSVD(\mathbf{T}_{(3)})$

Remark : **C** is in the column space of **W** but not of $\hat{\mathbf{W}}$!

E.Cohen/C.Farias (GIPSA-Lab, CNRS)

Tensor CP in the compressed space

$$\begin{split} \widehat{\boldsymbol{\mathcal{G}}} &= (\widehat{\boldsymbol{\mathsf{U}}}^{\mathsf{T}} \otimes \widehat{\boldsymbol{\mathsf{V}}}^{\mathsf{T}} \otimes \widehat{\boldsymbol{\mathsf{W}}}^{\mathsf{T}}) \left[(\boldsymbol{\mathsf{U}} \otimes \boldsymbol{\mathsf{V}} \otimes \boldsymbol{\mathsf{W}}) (\boldsymbol{\mathsf{A}}_c \otimes \boldsymbol{\mathsf{B}}_c \otimes \boldsymbol{\mathsf{C}}_c) \boldsymbol{\mathcal{I}} + \boldsymbol{\mathcal{E}} \right] = \\ & (\boldsymbol{\mathsf{A}}_c \otimes \boldsymbol{\mathsf{B}}_c \otimes \boldsymbol{\mathsf{C}}_c) \boldsymbol{\mathcal{I}} + \boldsymbol{\mathcal{E}}_c \end{split}$$

Compress \$\mathcal{T}\$ using any fast HOSVD
Decompose \$\hat{\mathcal{G}}\$ to get \$\hat{\mathbf{A}}_c\$, \$\hat{\mathbf{B}}_c\$, \$\hat{\mathcal{C}}_c\$ (ALS for example)
Decompress : \$\hat{\mathbf{A}} = \$\mathbf{U} \hat{\mathbf{A}}_c\$, \$\hat{\mathbf{B}} = \$\mathbf{V} \hat{\mathbf{B}}_c\$, \$\hat{\mathcal{C}} = \$\mathbf{W} \hat{\mathcal{C}}_c\$

Compressed dimensions : at least tensor rank

Time in seconds for CP dec. $N \times N \times N$ - rank 5 random tensor :

Ν	10	50	100	200	300
ALS	0.36	0.70	1.92	7.13	26.43
Co-ALS	0.33	0.39	0.45	0.93	2.14

Rank and minimum compressed dimensions

Singular values from the HOSVD in the noisy case (N = 300, rank 5)

It suggests elbow/knee method

Plan for the rest of the talk

Compression under...

- coupling constraints
- partial coupling constraints
- other coupling constraints

Coupled tensors

Coupling on 1 factor

Multimodal data fusion

Coupled tensors

Coupling on 1 factor

Multimodal data fusion

E.Cohen/C.Farias (GIPSA-Lab, CNRS)

Joint Tensor Compression

Funded by ERC Decoda 8 / 25

Joint Compression

Compression of coupled noisy tensors

$$\mathbf{C} = \mathbf{C}'$$
$$\mathbf{C}_c := \widehat{\mathbf{W}}^T \mathbf{C}$$
$$\mathbf{C}'_c := \widehat{\mathbf{W}}'^T \mathbf{C}'$$

Compression of coupled noisy tensors

$$\mathbf{C} = \mathbf{C}'$$
$$\mathbf{C}_c := \widehat{\mathbf{W}}^T \mathbf{C}$$
$$\mathbf{C}_c' := \widehat{\mathbf{W}}'^T \mathbf{C}'$$
$$\widehat{\mathbf{W}} \mathbf{C}_c \neq \widehat{\mathbf{W}}' \mathbf{C}_c'$$

C and **C**' are not in the column space of $\widehat{\mathbf{W}}$ and $\widehat{\mathbf{W}}'$.

E.Cohen/C.Farias (GIPSA-Lab, CNRS)

A solution : joint compression

Constrain to have same basis \rightarrow coupling equality in compressed space !

 $\mathbf{C} = \mathbf{C}'$ $\mathbf{C}_c := \widehat{\mathbf{W}}_j^T \mathbf{C}$ $\mathbf{C}_c' := \widehat{\mathbf{W}}_j^T \mathbf{C}'$

A solution : joint compression

Constrain to have same basis \rightarrow coupling equality in compressed space !

$$\mathbf{C} = \mathbf{C}'$$
$$\mathbf{C}_c := \widehat{\mathbf{W}}_j^T \mathbf{C}$$
$$\mathbf{C}'_c := \widehat{\mathbf{W}}_j^T \mathbf{C}'$$

$$\mathbf{C}_{c}=\mathbf{C}_{c}^{\prime}$$

A solution : joint compression

Constrain to have same basis \rightarrow coupling equality in compressed space !

$$\mathbf{C} = \mathbf{C}'$$

 $\mathbf{C}_c := \widehat{\mathbf{W}}_j^T \mathbf{C}$
 $\mathbf{C}'_c := \widehat{\mathbf{W}}_j^T \mathbf{C}'$

$$C_c = C'_c$$

Define \mathbf{W}_j as a basis for stacked 3^{rd} modes $[\mathbf{C}, \mathbf{C}']$:

$$SVD\left(\left[\frac{\mathbf{T}_{(3)}}{\sigma_n}, \frac{\mathbf{T}'_{(3)}}{\sigma'_n}\right]\right) = \widehat{\mathbf{W}}_j \mathbf{N}_j$$

Since same **C** : **truncate R** columns of $\widehat{\mathbf{W}}_{j}$

E.Cohen/C.Farias (GIPSA-Lab, CNRS)

Coupled CP decomposition

Uncompressed problem :

$$\begin{pmatrix} \mathcal{T} = (\mathbf{A} \otimes \mathbf{B} \otimes \mathbf{C}) \mathcal{I} + \mathcal{E} \\ \mathcal{T}' = (\mathbf{A}' \otimes \mathbf{B}' \otimes \mathbf{C}) \mathcal{I} + \mathcal{E}' \end{cases}$$
(1)

Compressed problem :

$$\begin{cases} \mathcal{G} = (\mathbf{A}_c \otimes \mathbf{B}_c \otimes \mathbf{C}_c) \mathcal{I} + \mathcal{E}_c \\ \mathcal{G}' = (\mathbf{A}'_c \otimes \mathbf{B}'_c \otimes \mathbf{C}_c) \mathcal{I} + \mathcal{E}'_c \end{cases}$$
(2)

Solve problem (2) with any coupled decomposition algorithm

E.Cohen/C.Farias (GIPSA-Lab, CNRS)

Application in chemometrics

Fluorescence spectroscopy data : emission spectra mixtures

multimodal chemometrics data set from Acar et al¹

Description

5 compounds : Valine-Tyrosine-Valine (Val), Tryptophan- Glycine (Gly), Phenylalanine (Phe), Maltoheptaose (Mal) and Propanol (Pro)

Nb. of excitation wave lengths21 (A)Nb. of emission wave lengths251 (B)Nb. of Mixtures28 (C)Missing values30% (replaced by zeros)

bolomics. In Conf. Proc. IEEE Eng. Med. Biol. Soc., pages 6023-6026. IEEE, 2013

E.Cohen/C.Farias (GIPSA-Lab, CNRS)

^{1.} E. Acar, A.J. Lawaetz, M.A. Rasmussen, and R. Bro. Structure-revealing data fusion model with applications in meta-

Application in chemometrics

Nuclear magnetic resonance data : chemical shifts gradient levels mixtures

same sample presented previously : coupling through C

Nb. of chemical shifts13324 (A')Nb. of gradient levels8 (B')Nb. of Mixtures28 (C)Missing values0% (replaced by zeros)

Results

E.Cohen/C.Farias (GIPSA-Lab, CNRS)

Tensor Coupling

Results

Tensor Coupling

Results

Results

Black lines : ground truth

Partial coupling

Problem : NMR has rank 5, not all components are coupled

Mal and Pro appear in NMR

A solution

For ranks R, R' and R_c coupled components define \mathbf{W}_j as a basis for stacked 3^{rd} modes $[\mathbf{C}, \mathbf{C}']$:

$$SVD\left(\left[\frac{\mathbf{T}_{(3)}}{\sigma_n}, \frac{\mathbf{T}'_{(3)}}{\sigma'_n}\right]\right) = \widehat{\mathbf{W}}_j \mathbf{N}_j$$

Since same R_c components : truncate $\mathbf{R} + \mathbf{R}' - \mathbf{R}_c$ columns of $\widehat{\mathbf{W}}_j$

Partially coupled CP decomposition

Shared components ${\bf C}^{s}$ Unshared components ${\bf C}$ and ${\bf C}^{\prime}$

Uncompressed problem :

$$\begin{cases} \mathcal{T} = (\mathbf{A} \otimes \mathbf{B} \otimes [\mathbf{C}^{s} \mathbf{C}]) \mathcal{I} + \mathcal{E} \\ \mathcal{T}' = (\mathbf{A}' \otimes \mathbf{B}' \otimes [\mathbf{C}^{s} \mathbf{C}']) \mathcal{I} + \mathcal{E}' \end{cases}$$
(3)

Compressed problem :

$$\begin{cases} \mathcal{G} = (\mathbf{A}_c \otimes \mathbf{B}_c \otimes [\mathbf{C}_c^s \, \mathbf{C}_c]) \, \mathcal{I} + \mathcal{E}_c \\ \mathcal{G}' = (\mathbf{A}'_c \otimes \mathbf{B}'_c \otimes [\mathbf{C}_c^s \, \mathbf{C}'_c]) \, \mathcal{I} + \mathcal{E}'_c \end{cases}$$
(4)

Ranks and number of coupled components

Exploratory way :

- $\ \, \bullet \ \, R \ \, \text{and} \ \, R' \ \, \text{suggested by uncoupled HOSVD}$
- 2 R_c from joint SVD of 3rd mode

Elbow/knee of Σ_j at $R + R' + R_c$ ($R_c = 3$)

Noisy coupling and Linear coupling

• Noisy coupling

$$\begin{array}{rcl} \mathbf{C} &=& \mathbf{C}^{\star} + \mathbf{\Gamma} \\ \mathbf{C}' &=& \mathbf{C}^{\star} + \mathbf{\Gamma}' \end{array} \tag{5}$$

$$\mathcal{T} = (\mathbf{A} \otimes \mathbf{B} \otimes \mathbf{C}^*) \mathcal{I} + (\mathbf{A} \otimes \mathbf{B} \otimes \mathbf{\Gamma}) \mathcal{I} + \mathcal{E} \mathcal{T}' = (\mathbf{A}' \otimes \mathbf{B}' \otimes \mathbf{C}^*) \mathcal{I} + (\mathbf{A}' \otimes \mathbf{B}' \otimes \mathbf{\Gamma}') \mathcal{I} + \mathcal{E}'$$
(6)

• Linear coupling

$$\mathbf{C}' = \mathbf{H}\mathbf{C},\tag{7}$$

Conclusions

- Compression of CP decomposition : large complexity reduction
 - SVD needs to be fast Halko et al RSVD
 - SVD negligible if multiple initializations needed
- Data fusion setting : joint compression

Perspectives :

- Deal with coupled data of different sizes
- Deal with approximately coupled data

Thank you for your attention !

13th International Conference on Latent Variable Analysis and Signal Separation

