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Separability: a fundamental property

Definition: Separability

Let f : Rm1 ×Rm2 ×Rm3 → R, mi ∈ N. Map f is said to be separable if
there exist real maps f1, f2, f3 so that

f(x, y, z) = f1(x)f2(y)f3(z)

Of course, any order (i.e. number of variables) is fine.

Examples:

(xyz)n = xnynzn , ex+y = exey,∫
x

∫
y
h(x)g(y)dxdy =

(∫
x
h(x)dx

) (∫
y
g(y)dy

)
Some usual function are not separable, but are written as a few separable ones!

• cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)

• log(xy) = log(x)1y∈R + 1x∈R log(y)
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Some tricks on separability

A fun case: exponential can be seen as separable for any given order.

Let y1(x), y2(x), . . . , yn(x) s.t. x =
n∑
i

yi(x) for all x ∈ R,

ex =

n∏
i=1

eyi(x)

Indeed, for any x, setting y1, yn as new variables,

ex = ey1+y2+y3+...+yn := f(y1, . . . , yn)

Then f is not a separable function of
∑

i yi, but it is a separable function of yi:

f(y1, y2, . . . , yn) = ey1ey2 . . . eyn = f1(y1)f2(y2) . . . fn(yn)

Conclusion: description of the inputs matters !
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Separability and matrix rank

Now what about discrete spaces? (x, y, z)→ {(xi, yj , zk)}i∈I,j∈J,k∈K
→ Values of f are contained in a tensor Tijk = f(xi, yj , zk).

Example: exi is a vector of size I. Let us set xi = i for i ∈ {0, 1, 2, 3}.
e0

e1

e2

e3

 =


e0e0

e0e1

e2e0

e2e1

 :=

[
e0

e2

]
⊗K

[
e0

e1

]

Here, this means that a matricized vector of exponential is a rank one matrix.[
e0 e1

e2 e3

]
=

[
e0

e2

] [
e0 e1

]
Setting i = j21 + k20, f(j, k) = e2j+k is separable in (j, k).

Conclusion: A rank-one matrix can be seen as a separable function on a grid.
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Tensor rank??

We can also introduce a third-order tensor here:

e0

e1

e2

e3

e4

e5

e6

e7


=



e0e0e0

e0e0e1

e0e2e0

e0e2e1

e4e0e0

e4e0e1

e4e2e0

e4e2e1


=

[
e0

e4

]
⊗K

[
e0

e2

]
⊗K

[
e0

e1

]

By “analogy” with matrices, we say that a tensor is rank-one if it is the
discretization of a separable function.
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From separability to matrix/tensor rank

From now on, we identify a function f(xi, yj , zk) with a three-way array Ti,j,k.

Definition: rank-one tensor

A tensor Ti,j,k ∈ RI×J×K is said to be a [decomposable] [separable] [simple]
[rank-one] tensor iff there exist a ∈ RI , b ∈ RJ , c ∈ RK so that

Ti,j,k = aibjck

or equivalently,
T = a⊗ b⊗ c

where ⊗ is a multiway equivalent of the exterior product a⊗ b = abt.

What matters in practice may be to find the right description of the inputs !!
(i.e. how to build the tensor)

=

f(x, y, z, t, . . . ) T = a⊗ b⊗ c
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ALL tensor decomposition models are based on separability

CPD:

T =
∑r

q=1 aq ⊗ bq ⊗ cq
=

T =

+ · · · +

a1 ⊗ b1 ⊗ c1+ · · · + ar ⊗ br ⊗ cr
Tucker:

T =
r1,r2,r3∑

q1,q2,q3=1

gq1q2q3aq1 ⊗ bq2 ⊗ cq3

Hierarchical decompositions: for another talk, sorry :(

Definition: tensor [CP] rank (also applies for other decompositions)

rank(T ) = min{r | T =
∑r

q=1 aq ⊗ bq ⊗ cq}

Tensor CP rank coincides with matrix “usual” rank! (on board)



If I were in the audience, I would be wondering:

• Why should I care??
→ I will tell you now.

• Even if I cared, I have no idea how to know my data is somehow separable
or a low-rank tensor!
→ I don’t know, this is the difficult part but at least you may think about separability in the future.

→ It will probably not be low rank, but it may be approximately low rank!

9/34
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Making use of low-rank representations

Let A = [a1, a2, . . . , ar], B and C similarly built.

Uniqueness of the CPD

Under mild conditions

krank(A) + krank(B) + krank(C)− 2 ≥ 2r, (1)

the CPD of T is essentially unique (i.e.) the rank-one terms are unique.

This means we can interpret the rank-one terms aq, bq, cq
→ Source Separation!

Compression (also true for other models)

The CPD involves r(I + J +K − 2) parameters, while T contains IJK entries.

If the rank is small, this means huge compression/dimentionality reduction!

• missing values completion, denoising

• function approximation

• imposing sparse structure to solve other problems (PDE, neural networks,
dictionary learning. . . )
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Approximate CPD

• Often, T ≈
r∑
q

aq ⊗ bq ⊗ cq for small r.

• However, the generic rank (i.e. rank of random tensor) is very large.

• Therefore if T =
∑r

q aq ⊗ bq ⊗ cq +N with N some small Gaussian noise,
it has approximatively rank lower than r but its exact rank is large.

Best low-rank approximate CPD

For a given rank r, the cost function

η(A,B,C) = ‖T −
r∑

q=1

aq ⊗ bq ⊗ cq‖2F

has the following properties:

• it is infinitely differentiable.

• it is non-convex in (A,B,C), but quadratic in A and B and C.

• its minimum may not be attained (ill-posed problem).

My favorite class of algorithms to solve aCPD: block-coordinate descent!
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Example: Spectral unmixing for Hyperspectral image processing

1 Pixels can contain several materials → unmixing!

2 Spectra and Abundances are nonnegative!

3 Few materials, many wavelengths
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Spectral unmixing, separability and nonnegative matrix factorization

One material q has separable intensity:

Iq(x, y, λ) = wq(λ)hq(x, y)

where wq is a spectrum characteristic to material q, and hq is its abundance
map.

Therefore, for an image M with r materials,

I(x, y, λ) =

r∑
q=1

wq(λ)hq(x, y)

This means the measurement matrix Mi,j = Ĩ(pixeli, λj) is low rank!

Nonnegative matrix factorization

argmin
W≥0,H≥0

‖M −
r∑

q=1

wqh
t
q‖2F

where Mi,j = M([x⊗K y]i, λj) is the vectorized hyperspectral image.

Conclusion: I have tensor data, but matrix model! Tensor data 6= Tensor model
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ProblemS

1 How to deal with the semi-supervised settings?
• Dictionary-based CPD [C., Gillis 2017]
• Multiple Dictionaries [C., Gillis 2018]

2 Blind is hard! E.g., NMF is often not identifiable.
• Identifiability of Complete Dictionary Learning [C., Gillis 2019]
• Algorithms with sparse NMF [C., Gillis 2019]

3 What about dealing with several data set (Hyper-Multispectral, time
data)?

• Coupled decompositions with flexible couplings. (Maybe in further
discussions)



Semi-supervised Learning with LRA
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A boom in available resources

Nowdays, source separation may not need to be blind!

Hyperspectral images:

• Toy data with ground truth: Urban, Idian Pines. . .

• Massive ammount of data: AVIRIS NextGen

• Free spectral librairies: ECOSTRESS

How to use the power of blind methods for supervised learning?

This talk

Pre-trained dictionaries are available

Many other problems (TODO)

• Test and Training joint factorization.

• Mixing matrix pre-training with domain adaptation.

• Learning with low-rank operators.
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Using dictionaries guaranties interpretability

λ
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Y
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r

?
D

d � r

Idea: Impose A ≈ D(:,K), #K = R.

= M = D(:,K)B



18/34

sparse coding and 1-sparse coding

1st order model (sparse coding):

m =

r∑
q=1

λqdsq

= D(:,K)λ

= Dλ̃

for m ∈ Rm, sq in [1, d], λq ∈ R
and dsq ∈ D, K = {sq, q ∈ [1, r]}.

=

=

2d order model (collaborative sparse coding):

M =

r∑
q=1

dsq ⊗ bq

= D(:,K)B

= DB̃

=

=
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Tensor sparse coding

Tensor 1-sparse coding [C., Gillis 17,18]

T =
r∑

q=1

dsq ⊗ bq ⊗ cq

• Generalizes easily to any order.

• Alternating algorithms can be adapted easily. Low memory requirement.

• Can be adapted for multiple atom selection (future works).
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Theoretical gain [C., Gillis 18]

Theorem: Matrix factorization is identifiable

If spark(D) ≥ r, r = rank(M), #K = r, and if there exist M = D(:,K)B,
then this factorization is unique up to permutations.

Theorem: Tensor factorization is often identifiable

If spark(D) ≥ r, r = rank(M), #K = r, and if there exist
T =

∑r
q=1 dsq ⊗ bq ⊗ cq, then the following holds:

(B � C) is full rank ⇒ the factorization is unique.

Theorem: 3d order best low-rank approximation exists

If spark(D) ≥ r, r = rank(M) and #K = r, then the minimum of

η(K, B,C) = ‖T −
r∑

q=1

dsq ⊗ bq ⊗ cq‖
2
F

always exists.

Earlier results for Multiple Measurements Vectors: [Cotter 05, Chen 06]



21/34

Yet another alternating algorithm

argmin
A,B,C,K

‖T −
r∑

q=1

aq ⊗ bq ⊗ cq‖2F + λ‖A−D(:,K)‖2F

MPALS

Iterate until convergence:
1. Factors are updated by any well-known algorithm (ALS, gradient-based
methods. . . ).
2. K is obtained by finding the closest atom in D for each column of A.
3. Increase λ if necessary.

tricks:

• To impose that no atom is selected twice, solve an assignment problem.

• If factors are constrained, simply use any off-the-shelf solver.

• Parameter λ may be tuned for naive flexible dictionary constraint.
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Tentative application : Spectral unmixing

M = M(:,K)B, B ≥ 0

Figure: Spectral signatures and abundance maps identified using MPALS for the
Urban data set with r = 6.

We badly need more interesting data!
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Extensions

Flexible dictionary constraint: Using known/learnt p(A|D).

Multiple Dictionaries: [C., Gillis 2018]
A = Π[D1(:,K1), . . . , DN (:,Kn)], #Ki ≤ di,

∑
i di ≥ r

Sources 𝑎𝑖 Libraries 𝐷𝑘

Multiple atoms selection: A = DS, ‖si‖0 ≤ k



Complete Dictionary Learning: Uniqueness and Algorithms with
nonnegativity

24/34
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Complete Dictionary Learning

Given M ∈ Rd×n and fixed r ≤ d < n, find D ∈ Rd×r and B ∈ Rr×n such
that M = DB =

r∑
q=1

dq ⊗ bq,

‖bi‖0 ≤ k < r, ∀i ∈ [1, n]

=M D

B

Problem: Deterministic conditions for the (essential) uniqueness of CDL.

other name: Low-rank Sparse Component Analysis
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Our main results [C., Gillis, 2019, accepted]

Sparsity may be enough to ensure uniqueness, even with a tractable number of
samples!

Theorem (Simplified version)

If each hyperplaned spanned by all but one columns of D contain more than
r(r−2)
r−k

columns of M with full spark, then CDL is essentially unique.

This implies O( r3

(r−k)2
) data points are sufficient for ensuring uniqueness.

Tightness: The result is tight if k = 1 or k = r − 1 or k = αr with fixed
α ∈]0, 1[.

• Contredicts [Georgiev et. al., 2005], see counter examples.

• Improves w.r.t. previously known combinatorial bounds [Aharon 2005].
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Algorithms for nonnegative Dictionary Learning [C., Gillis, ICASSP 2019]

Or algorithms for k-sparse NMF.

argmin
A≥0,B≥0,‖bi‖0≤k

‖M −
r∑

q=1

aqb
t
q‖2F

Ideas:

1 If k and r are small, trying all
(
r
k

)
zero patterns is tractable.

2 We can try a variant of k-means.

ESNA

1. Update A with fixed H by nonnegative least squares.
2. Update B with fixed W by trying all patterns of zeros (solving

(
r
k

)
nonnegative least squares).

ESNA should (?) be better than any nonnegative sparse coding techniques
(NNOMP, Lasso with nonnegativity constraints, . . . ).

NOLRAK

1. Compute A and B with known zeros in B (averaging step)
2. Compute the zero positions of B (affectation step)
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Some experimental results

Experimental Setup:

• Goal: Solve exact NDL (identifiable)

• r = 4, k = (2; 3), n = (300; 200), d ∈ [4, 125]

• Uniformly sampled D and B, B sparsified to ensure identifiability.

• Results averaged over N = 100 trials.
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There is room left for algorithmic improvement!

Also, result on uniqueness of Nonnegative CDL? Overcomplete? Noisy?
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Joint factorization models: some facts, and the linearly coupled
case.
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Joint factorizations and CPD

T =

r∑
q=1

aq ⊗ bq ⊗ cq

is equivalent to:

Mk = AΣkB
T =

r∑
q=1

cqkaq ⊗ bq

with T::k = Mk, A = [a1, . . . , ar], B = [b1, . . . .br], Σk = diag(C:k)

=

...

=
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Closing the gap between matrix and tensor factorization: flexible coupling

Several Matrix Factorizations:

∀k ∈ [1,K], Mk = AkB
T
k

Joint Matrix Factorizations = Matrix Factorizations:

[M1, . . . ,MK ] = ABT = A[BT
1 , . . . , B

T
K ]

→ same A but different Bk.

Example: Various hyperspectral images with same materials.

Flexible Coupling: linearly coupled factors

For all k ∈ [1,K],

Mk = AΣkB
T
k

0 = Lk(Bk, H)

where Lk is a bilinear matrix operator and Lk(Bk, H) ∈ Rp3×p4 , H ∈ Rp1×p2

for some integers pi.

Lk and H can be given, or learned under some structural constraints!



33/34

Some particular cases

PARAFAC2

Lk(Bk, H) := Bk − PkH with PT
k Pk = I and Pk ∈ RJ×r (if r < J).

• PARAFAC2 supposes BT
k Bk is constant.

• Pk can be learnt.

• Constrained version can be difficult to deal with. [C., Bro 2018][Schenker,
C., Acar, ongoing work]

Partially coupled factors

Lk(Bk, H) = BkΣk −H where Σk is a square diagonal matrix with rk
nonzeros.

By choosing the numbers rk, one can choose how many components are
related in each matrix.

Many models to explore!

Shift PARAFAC [Harshman 2003], Conv PARAFAC [Morup 2008], Registered
PARAFAC [C., Cabral-Farias, Rivet 2018]
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Conclusion

Separability/LRA + Machine Learning
=

nice research

f(x, y) = f1(x)f2(y)

M = AB, (A,B) ∈ C2

T =
r∑
q
aq ⊗ bq ⊗ cq

Unsupervised Learning or Blind
Separation

Structured approximations

Supervised Learning

Neural networks
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