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Goal: give an overview of research directions in fast NTF computation.

If any work of importance is not mentioned, please ask questions or talk to me!
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Nonnegative tensor factorization: crash course
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Nonnegativity
T>0,A>0,B>0,C>0.

Approximate NTF

Fix r, given T, solve

argmin |7 —(A® B® C)Z,||7 (1)
A>0,6>0,C>0

Well-posed problem, often essentially unique solution [Comon, Qi, Lim 2014]
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Challenges

Extremely large, sparse tensors

Partial observations, sequential

Diversity of applications and specializations
Ill-conditioning

Low-latency processing of average-sized tensors
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Background: some algorithms for NTF

All-at-once

» Gradient 4+ [ Prox / Fast /
Stochastic / Conjugate ]

» ADMM
» Gauss-Newton with CG
» Levenberg Marquardt

nonnegativity imposed by interior point
methods, squaring or active set.

X ADMM < AOADMM, PG < APG
X Sometimes slower than BCD

O (Second order) Very efficient near
optimum

Block coordinate (alternating)

» Alternating proximal gradient

» Alternating nonnegative least
squares (ANLS)

» HALS
» Multiplicative updates
» AOADMM

nonnegativity imposed mostly by
proximal step.

X Sometimes slower near optimum
than all-at-once

O Convex optimization tools

O Fast in practice
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Overview

HPC

Not my expertise. . .
» n-mode product
> NNLS

> 77

Sampling and
Randomization

>
>
>

Compression
Sketching (NN ?)
Subtensor
sampling

Fiber sampling

Element-wise
sampling

Yk

Acceleration

» Adagrad
» Momentum
» Quantification

» Extrapolation
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High Performance Computing

Core ideas
» Use parallel processing
» Minimal memory cost

» Utilize sparsity
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Some works | know of:
1. Efficient N-mode product [Li et. al. 2015]
2. Parallel Nonnegative Least Squares for NTF [Ballard et. al., 2018]
3. Many more | do not know.
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Sampling and Randomization 1: Compression / Structure

T

%

U ® % ® W) g

Method 1: Tucker compression preprocessing [C. et. al. 2015]

argmin||G — (Ac ® Be ® C)T||F st. UAc >0,VB. >0,WC. >0 (2)
ACYBC!CC

Method 2: Account for (Tucker) structure [Vervliet et. al. 2019]

argmin||[(U®@ Vo W)G — (A B® C) || st. A>0,B>0,C>0 (3)
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Sampling and Randomization 2: sketching

Idea: random projections
1. [ ] PARACOMP [Sidiropoulos, Papalexakis et al 2014]

I O [ e

2. [ ] Tensor sketching with DRM [Sun et. al. 2019]

3. ] TENSORSKETCH [e.g. Anandkumar 2015] [Malik, Becker 2018]
(Fast implementation with FFT, COUNTSKETCH)

Not really adapted to NTF? Or interesting perspectives?
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Sampling and Randomization 3: subtensor / slices sampling

A lot of existing and ongoing work

1. [CPD-NTF] Subtensor sampling [Papalexakis et. al. 2014] [Vervliet et. al.
2016]

Makes (stochastic) gradient steps
» cheap
» memory-efficient

» partial (only some parameters are updated)

2. [CPD-NTF] Fibers sampling [Battaglino et. al., 2018] [Fu et. al. 20197

.
Makes MTTKRP T (A© B)

» memory-efficient

easy sampling with kr product!




Sampling and Randomization 4: element-wise sampling

1. [Tucker] Sampling once and reweighting: MACH [Tsurakakis, 2009]
2. Stochastic gradient? [Kolda et. al. ?7]

Ongoing research topic! Naive stochastic gradient is bad?

Some observations
» Tensor structure makes us creative
» Room for nonnegative adaptations

» Strong sampling / optimization / implementation ties 12/10



Acceleration of first order methods

Proximal gradient-based method — Acceleration!!

» Extrapolation of the iterates (Nesterov, Andersen...)
» Stepsize adaptation
» Gradient momentum
» Gradient quantification / noise
>
e.g.

Adam and (N)TF in [Fu 2019?][Kolda?][Some random online blog]

Question

Is this really research material for #s me?

Cons Pros
» Straightforward in Pytorch > Nice interactions
» Mostly development » Convergence proofs
» Super incremental » Niche effect?
> Need consistent tests > New accelerations!
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Extrapolation for NTF

All-at-once optimization:

Mostly straightforward, except for second order methods(?)

BCD:

Extrapolate within each block update!

e.g.: Alternatively solve for A, B, C
argmin|| Ty — A(B® C)7 ||z (Matrix NNLS) (4)
A>0
solved with extrapolated ADMM [Liavas et. al. 2018].

Another ref with HPC acceleration instead [Smith et. al. 2017]
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Time for our contribution:
extrapolation between each block in BCD
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Extrapolation: Heuristic Extrapolation with Restart (HER)

The HER algorithm
» initialize U, V,W; Uy = U,Vy =V, Wy =W
» loop until convergence:

1 Uolg = U, Voig = V; Woig = W
2. Update g with heuristic (next slide)

3. Update U e.g. using NNLS(7, Vy, Wy)

4. Extrapolate Uy = U + B(U — Uoy)

5. Update V e.g. using NNLS(7T, Uy, Wy)

6. Extrapolate Vy = V + B(V — V)

7. Update W e.g. using NNLS(7, Uy, Vy)

8. Extrapolate Wy = W + B(W — W,y)
» if cost function increases, restart Uy = U, Vy = V, Wy = W

What is “new”: Extrapolation between blocks of BCD! [Bro 1998]
What is common: Extrapolation within each block.
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Yk+1

BAXx At each iteration,

1. if error has decreased, increase (8
up to a threshold Bmax.

I Xk4+1
! 2. if error has increased, decrease (3
vy, f ! and Bmax.
: In any case, 3 €]0, Bmax] With Bmax < 1.
|
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1
1
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[1J,K;r,0] =[150,1000,100,10,0.0] on algorithms with HER(red), sans HER(blue)
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Figure: Acceleration by HER (red) vs BCD (blue) with various update strategies
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Conclusion

Fast NTF
» Many approaches in the era of Machine Learning
» Cross-disciplinary = interactions!!

» Need comparisons!! Need benchmark data
(sparse/dense, average/huge, various applications)

Fast NTF

’ HPC ‘ ’ Sampling ‘ ‘ Acceleration

Proposed algorithm HER
» Easy to understand, hard to study
» Plug-and-play
» Promising results [Ang, C., Gillis 2019][A., Hien, C., G. in prep.] for NTF
» Can interact with most discussed methods for fast NTF!!

A word from my co-author

A fourth ingredient: pre-conditionning?
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