
1/19

Recent advances on fast nonnegative

tensor factorization

Jeremy E. Cohen

IRISA, INRIA, CNRS, University of Rennes, France

Tensor and AI workshop, Santa Fe, 18 september 2019



2/19



Goal: give an overview of research directions in fast NTF computation.

If any work of importance is not mentioned, please ask questions or talk to me!

3/19



4/19

Nonnegative tensor factorization: crash course

=

T = (A ⊗ B ⊗ C ) Ir
T = [|A ; B ; C|]
T = A ×1 B ×2 C ×3 Ir

Nonnegativity

T ≥ 0; A ≥ 0, B ≥ 0, C ≥ 0.

Approximate NTF

Fix r , given T , solve

argmin
A≥0,B≥0,C≥0

‖T − (A⊗ B ⊗ C) Ir‖2
F (1)

Well-posed problem, often essentially unique solution [Comon, Qi, Lim 2014]



5/19

Challenges

I Extremely large, sparse tensors

I Partial observations, sequential

I Diversity of applications and specializations

I Ill-conditioning

I Low-latency processing of average-sized tensors

I . . .



5/19

Challenges

I Extremely large, sparse tensors

I Partial observations, sequential

I Diversity of applications and specializations

I Ill-conditioning

I Low-latency processing of average-sized tensors

I . . .



6/19

Background: some algorithms for NTF

All-at-once

I Gradient + [ Prox / Fast /
Stochastic / Conjugate ]

I ADMM

I Gauss-Newton with CG

I Levenberg Marquardt

nonnegativity imposed by interior point
methods, squaring or active set.

X ADMM < AOADMM, PG < APG

X Sometimes slower than BCD

O (Second order) Very efficient near
optimum

Block coordinate (alternating)

I Alternating proximal gradient

I Alternating nonnegative least
squares (ANLS)

I HALS

I Multiplicative updates

I AOADMM

nonnegativity imposed mostly by
proximal step.

X Sometimes slower near optimum
than all-at-once

O Convex optimization tools

O Fast in practice



7/19

Overview

HPC

Not my expertise. . .

I n-mode product

I NNLS

I ??

Sampling and
Randomization
I Compression

I Sketching (NN ?)

I Subtensor
sampling

I Fiber sampling

I Element-wise
sampling

Acceleration

I Adagrad

I Momentum

I Quantification

I Extrapolation

η∇yk f

β∆x

yk

xk+1

xk

yk+1



8/19

High Performance Computing

Core ideas

I Use parallel processing

I Minimal memory cost

I Utilize sparsity

Some works I know of:

1. Efficient N-mode product [Li et. al. 2015]

2. Parallel Nonnegative Least Squares for NTF [Ballard et. al., 2018]

3. Many more I do not know.



9/19

Sampling and Randomization 1: Compression / Structure

≈

T ≈ (U ⊗ V ⊗ W ) G

A

B
C

Method 1: Tucker compression preprocessing [C. et. al. 2015]

argmin
Ac ,Bc ,Cc

‖G − (Ac ⊗ Bc ⊗ Cc)Ir‖2
F s.t. UAc ≥ 0,VBc ≥ 0,WCc ≥ 0 (2)

Method 2: Account for (Tucker) structure [Vervliet et. al. 2019]

argmin
A,B,C

‖(U ⊗ V ⊗W )G − (A⊗ B ⊗ C)Ir‖2
F s.t. A ≥ 0,B ≥ 0,C ≥ 0 (3)



10/19

Sampling and Randomization 2: sketching

Idea: random projections

1. [CPD-(NTF?)] PARACOMP [Sidiropoulos, Papalexakis et al 2014]

2. [Tucker] Tensor sketching with DRM [Sun et. al. 2019]

3. [NN Tucker] TENSORSKETCH [e.g. Anandkumar 2015] [Malik, Becker 2018]

(Fast implementation with FFT, COUNTSKETCH)

Not really adapted to NTF? Or interesting perspectives?



11/19

Sampling and Randomization 3: subtensor / slices sampling

A lot of existing and ongoing work

1. [CPD-NTF] Subtensor sampling [Papalexakis et. al. 2014] [Vervliet et. al.

2016]

Makes (stochastic) gradient steps
I cheap

I memory-efficient

I partial (only some parameters are updated)

2. [CPD-NTF] Fibers sampling [Battaglino et. al., 2018] [Fu et. al. 2019?]

Makes MTTKRP
I cheaper

I memory-efficient

easy sampling with kr product!

T[3](A� B)T



12/19

Sampling and Randomization 4: element-wise sampling

1. [Tucker] Sampling once and reweighting: MACH [Tsurakakis, 2009]

2. Stochastic gradient? [Kolda et. al. ??]

Ongoing research topic! Naive stochastic gradient is bad?

Some observations

I Tensor structure makes us creative

I Room for nonnegative adaptations

I Strong sampling / optimization / implementation ties



13/19

Acceleration of first order methods

Proximal gradient-based method =⇒ Acceleration!!

I Extrapolation of the iterates (Nesterov, Andersen. . . )
I Stepsize adaptation
I Gradient momentum
I Gradient quantification / noise
I . . .

e.g.: Adam and (N)TF in [Fu 2019?][Kolda?][Some random online blog]

Question

Is this really research material for us me?

Cons

I Straightforward in Pytorch

I Mostly development

I Super incremental

I Need consistent tests

Pros

I Nice interactions

I Convergence proofs

I Niche effect?

I New accelerations!



13/19

Acceleration of first order methods

Proximal gradient-based method =⇒ Acceleration!!

I Extrapolation of the iterates (Nesterov, Andersen. . . )
I Stepsize adaptation
I Gradient momentum
I Gradient quantification / noise
I . . .

e.g.: Adam and (N)TF in [Fu 2019?][Kolda?][Some random online blog]

Question

Is this really research material for us me?

Cons

I Straightforward in Pytorch

I Mostly development

I Super incremental

I Need consistent tests

Pros

I Nice interactions

I Convergence proofs

I Niche effect?

I New accelerations!



14/19

Extrapolation for NTF

All-at-once optimization:

Mostly straightforward, except for second order methods(?)

BCD:

Extrapolate within each block update!

e.g.: Alternatively solve for A,B,C

argmin
A≥0

‖T[1] − A(B � C)T‖2
F (Matrix NNLS) (4)

solved with extrapolated ADMM [Liavas et. al. 2018].

Another ref with HPC acceleration instead [Smith et. al. 2017]



Time for our contribution:
extrapolation between each block in BCD

15/19



16/19

Extrapolation: Heuristic Extrapolation with Restart (HER)

The HER algorithm

I initialize U,V ,W ; Uy = U,Vy = V ,Wy = W
I loop until convergence:

1. Uold = U,Vold = V ;Wold = W
2. Update β with heuristic (next slide)

3. Update U e.g. using NNLS(T ,Vy ,Wy)
4. Extrapolate Uy = U + β(U − Uold )

5. Update V e.g. using NNLS(T ,Uy ,Wy)
6. Extrapolate Vy = V + β(V − Vold )

7. Update W e.g. using NNLS(T ,Uy ,Vy)
8. Extrapolate Wy = W + β(W −Wold )

I if cost function increases, restart Uy = U,Vy = V ,Wy = W

What is “new”: Extrapolation between blocks of BCD! [Bro 1998]
What is common: Extrapolation within each block.



17/19

Extrapolation: HER continued

η∇yk f

β∆x

yk

xk+1

xk

yk+1

At each iteration,

1. if error has decreased, increase β
up to a threshold βmax .

2. if error has increased, decrease β
and βmax .

In any case, β ∈]0, βmax ] with βmax ≤ 1.



18/19

Extrapolation: HER speeds up BCD algorithms

Figure: Acceleration by HER (red) vs BCD (blue) with various update strategies



19/19

Conclusion

Fast NTF

I Many approaches in the era of Machine Learning

I Cross-disciplinary = interactions!!

I Need comparisons!! Need benchmark data
(sparse/dense, average/huge, various applications)

Fast NTF

HPC Sampling Acceleration

Proposed algorithm HER

I Easy to understand, hard to study

I Plug-and-play

I Promising results [Ang, C., Gillis 2019][A., Hien, C., G. in prep.] for NTF

I Can interact with most discussed methods for fast NTF!!

A word from my co-author

A fourth ingredient: pre-conditionning?



19/19

Conclusion

Fast NTF

I Many approaches in the era of Machine Learning

I Cross-disciplinary = interactions!!

I Need comparisons!! Need benchmark data
(sparse/dense, average/huge, various applications)

Fast NTF

HPC Sampling Acceleration

Proposed algorithm HER

I Easy to understand, hard to study

I Plug-and-play

I Promising results [Ang, C., Gillis 2019][A., Hien, C., G. in prep.] for NTF

I Can interact with most discussed methods for fast NTF!!

A word from my co-author

A fourth ingredient: pre-conditionning?


