Recent advances on fast nonnegative tensor factorization

Jeremy E. Cohen
IRISA, INRIA, CNRS, University of Rennes, France
Tensor and AI workshop, Santa Fe, 18 september 2019

Goal: give an overview of research directions in fast NTF computation.

If any work of importance is not mentioned, please ask questions or talk to me!

Nonnegative tensor factorization: crash course

Nonnegativity
$\mathcal{T} \geq 0 ; A \geq 0, B \geq 0, C \geq 0$.
Approximate NTF
Fix r, given \mathcal{T}, solve

$$
\begin{equation*}
\underset{A \geq 0, B \geq 0, C \geq 0}{\operatorname{argmin}}\left\|\mathcal{T}-(A \otimes B \otimes C) \mathcal{I}_{r}\right\|_{F}^{2} \tag{1}
\end{equation*}
$$

Well-posed problem, often essentially unique solution [Comon, Qi, Lim 2014]

Challenges

- Extremely large, sparse tensors
- Partial observations, sequential
- Diversity of applications and specializations
- III-conditioning
- Low-latency processing of average-sized tensors

Challenges

- Extremely large, sparse tensors
- Partial observations, sequential
- Diversity of applications and specializations
- III-conditioning
- Low-latency processing of average-sized tensors

Background: some algorithms for NTF

All-at-once

- Gradient + [Prox / Fast / Stochastic / Conjugate]
- ADMM
- Gauss-Newton with CG
- Levenberg Marquardt
nonnegativity imposed by interior point methods, squaring or active set.
X ADMM $<$ AOADMM, $\mathrm{PG}<\mathrm{APG}$
X Sometimes slower than BCD
O (Second order) Very efficient near optimum

Block coordinate (alternating)

- Alternating proximal gradient
- Alternating nonnegative least squares (ANLS)
- HALS
- Multiplicative updates
- AOADMM
nonnegativity imposed mostly by proximal step.

X Sometimes slower near optimum than all-at-once

O Convex optimization tools
O Fast in practice

Overview

HPC

Not my expertise...

- n-mode product
- NNLS
- ??

Sampling and

 Randomization- Compression
- Sketching (NN ?)
- Subtensor sampling
- Fiber sampling
- Element-wise sampling

High Performance Computing

Core ideas

- Use parallel processing
- Minimal memory cost
- Utilize sparsity

Some works I know of:

1. Efficient N -mode product [Li et. al. 2015]
2. Parallel Nonnegative Least Squares for NTF [Ballard et. al., 2018]
3. Many more I do not know.

Sampling and Randomization 1: Compression / Structure

Method 1: Tucker compression preprocessing [C. et. al. 2015]

$$
\begin{equation*}
\underset{A_{c}, B_{c}, C_{c}}{\operatorname{argmin}}\left\|\mathcal{G}-\left(A_{c} \otimes B_{c} \otimes C_{c}\right) \mathcal{I}_{r}\right\|_{F}^{2} \text { s.t. } U A_{c} \geq 0, V B_{c} \geq 0, W C_{c} \geq 0 \tag{2}
\end{equation*}
$$

Method 2: Account for (Tucker) structure [Vervliet et. al. 2019]

$$
\begin{equation*}
\underset{A, B, C}{\operatorname{argmin}}\left\|(U \otimes V \otimes W) \mathcal{G}-(A \otimes B \otimes C) \mathcal{I}_{r}\right\|_{F}^{2} \text { s.t. } A \geq 0, B \geq 0, C \geq 0 \tag{3}
\end{equation*}
$$

Sampling and Randomization 2: sketching

Idea: random projections

1. [CPD-(NTF?)] PARACOMP [Sidiropoulos, Papalexakis et al 2014]

2. [Tucker] Tensor sketching with DRM [Sun et. al. 2019]
3. [NN Tucker] TENSORSKETCH [e.g. Anandkumar 2015] [Malik, Becker 2018] (Fast implementation with FFT, COUNTSKETCH)

Not really adapted to NTF? Or interesting perspectives?

Sampling and Randomization 3: subtensor / slices sampling

A lot of existing and ongoing work

1. [CPD-NTF] Subtensor sampling [Papalexakis et. al. 2014] [Vervliet et. al. 2016]

Makes (stochastic) gradient steps

- cheap
- memory-efficient
- partial (only some parameters are updated)

2. [CPD-NTF] Fibers sampling [Battaglino et. al., 2018] [Fu et. al. 2019?]

Makes MTTKRP

- cheaper
- memory-efficient
easy sampling with kr product!

Sampling and Randomization 4: element-wise sampling

1. [Tucker] Sampling once and reweighting: MACH [Tsurakakis, 2009]
2. Stochastic gradient? [Kolda et. al. ??]

Ongoing research topic! Naive stochastic gradient is bad?
Some observations

- Tensor structure makes us creative
- Room for nonnegative adaptations
- Strong sampling / optimization / implementation ties

Acceleration of first order methods

$$
\text { Proximal gradient-based method } \Longrightarrow \text { Acceleration!! }
$$

- Extrapolation of the iterates (Nesterov, Andersen. . .)
- Stepsize adaptation
- Gradient momentum
- Gradient quantification / noise
e.g.: Adam and (N)TF in [Fu 2019?][Kolda?][Some random online blog]

Question

Is this really research material for us me?

Cons

- Straightforward in Pytorch
- Mostly development
- Super incremental
- Need consistent tests

Pros

- Nice interactions
- Convergence proofs
- Niche effect?
- New accelerations!

Acceleration of first order methods

$$
\text { Proximal gradient-based method } \Longrightarrow \text { Acceleration!! }
$$

- Extrapolation of the iterates (Nesterov, Andersen. . .)
- Stepsize adaptation
- Gradient momentum
- Gradient quantification / noise
e.g.: Adam and (N)TF in [Fu 2019?][Kolda?][Some random online blog]

Question

Is this really research material for us me?

Cons

- Straightforward in Pytorch
- Mostly development
- Super incremental
- Need consistent tests

Pros

- Nice interactions
- Convergence proofs
- Niche effect?
- New accelerations!

Extrapolation for NTF

All-at-once optimization:
Mostly straightforward, except for second order methods(?)

BCD:

Extrapolate within each block update!
e.g.: Alternatively solve for A, B, C

$$
\begin{equation*}
\underset{A \geq 0}{\operatorname{argmin}}\left\|T_{[1]}-A(B \odot C)^{T}\right\|_{F}^{2} \quad(\text { Matrix NNLS }) \tag{4}
\end{equation*}
$$

solved with extrapolated ADMM [Liavas et. al. 2018].
Another ref with HPC acceleration instead [Smith et. al. 2017]

Time for our contribution: extrapolation between each block in BCD

Extrapolation: Heuristic Extrapolation with Restart (HER)

The HER algorithm

- initialize $U, V, W ; U y=U, V y=V, W y=W$
- loop until convergence:

1. $U_{\text {old }}=U, V_{\text {old }}=V ; W_{\text {old }}=W$
2. Update β with heuristic (next slide)
3. Update U
4. Extrapolate $U y=U+\beta\left(U-U_{\text {old }}\right)$ e.g. using $\operatorname{NNLS}\left(\mathcal{T}, V_{y}, W_{y}\right)$
5. Update V
e.g. using $\operatorname{NNLS}\left(\mathcal{T}, U_{y}, W_{y}\right)$
6. Extrapolate $V y=V+\beta\left(V-V_{\text {old }}\right)$
7. Update W
e.g. using $\operatorname{NNLS}(\mathcal{T}, U y, V y)$
8. Extrapolate $W y=W+\beta\left(W-W_{\text {old }}\right)$

- if cost function increases, restart $U y=U, V y=V, W y=W$

What is "new": Extrapolation between blocks of BCD! [Bro 1998] What is common: Extrapolation within each block.

Extrapolation: HER continued

At each iteration,

1. if error has decreased, increase β up to a threshold $\beta_{\text {max }}$.
2. if error has increased, decrease β and $\beta_{\text {max }}$.
In any case, $\beta \in] 0, \beta_{\max }$] with $\beta_{\max } \leq 1$.

Extrapolation: HER speeds up BCD algorithms

$[I, J, K, r, \sigma]=[150,1000,100,10,0.0]$ on algorithms with HER(red), sans HER(blue)

Figure: Acceleration by HER (red) vs BCD (blue) with various update strategies

Conclusion

Fast NTF

- Many approaches in the era of Machine Learning
- Cross-disciplinary = interactions!!
- Need comparisons!! Need benchmark data (sparse/dense, average/huge, various applications)

Fast NTF

HPC

Sampling

Acceleration

Proposed algorithm HER

- Easy to understand, hard to study
- Plug-and-play
- Promising results [Ang, C., Gillis 2019][A., Hien, C., G. in prep.] for NTF
- Can interact with most discussed methods for fast NTF!!

A word from my co-author
A fourth ingredient: pre-conditionning?

Conclusion

Fast NTF

- Many approaches in the era of Machine Learning
- Cross-disciplinary = interactions!!
- Need comparisons!! Need benchmark data (sparse/dense, average/huge, various applications)

Fast NTF

HPC

Sampling

Acceleration

Proposed algorithm HER

- Easy to understand, hard to study
- Plug-and-play
- Promising results [Ang, C., Gillis 2019][A., Hien, C., G. in prep.] for NTF
- Can interact with most discussed methods for fast NTF!!

A word from my co-author
A fourth ingredient: pre-conditionning?

