Nonnegative and low rank approximations

Jeremy E. Cohen

IRISA, Rennes, France

30 November 2020

I. INTRODUCTION

Our fil rouge

Let $y \in \mathbb{R}^3_+$ a color in RBG \bullet Let $A \in \mathbb{R}^{3 \times d}_+$ a collection of paint pots $\bullet \bullet \bullet \bullet \bullet$

We can perform conical combinations of colors

$\bullet + \bullet = \bullet$

 $0.5 \begin{pmatrix} 250 \\ 207 \\ 176 \end{pmatrix} + 0.5 \begin{pmatrix} 255 \\ 140 \\ 102 \end{pmatrix} = \begin{pmatrix} 252.5 \\ 173.5 \\ 139 \end{pmatrix}$

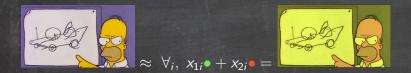
Any $\sum_{i} \alpha_{i} y_{i}$ with $0 \leq \alpha_{i}$ and $\sum_{i} \alpha_{i} y_{i} \leq 255$ is a color.

Our fil rouge

Set $d(y, \hat{y}) = ||y - \hat{y}||_2^2$ as the loss.

<u>Problem 1:</u> paint color y as well as possible using paint pots A.

Find $x \in \mathbb{R}^d_+$ such that d(y, Ax) is minimal



<u>Problem 2:</u> given a painting $\{y_i\}_{i \le n}$, find its closest 2-color version. Find $A \in \mathbb{R}^{3 \times 2}_+$ and $x_i \in \mathbb{R}^2_+$ such that $\forall i \le n, y_i \approx A x_i$

Visit https://www.wooclap.com/ITWISTQ1

<u>Problem 1</u>: if $A \in \mathbb{R}^{3 \times d}$ with $d \gg 3$, then

 $\min_{x\in\mathbb{R}^d}\|y-Ax\|_2^2$

<u>Problem 1</u>: if $\overline{A} \in \mathbb{R}^{3 \times d}$ with $d \gg 3$, then

 $\min_{x\in\mathbb{R}^d}\|y-Ax\|_2^2$

has infinitely many solution, $x_0^* + z$ with $z \in \text{Ker}(A)$. Most (all?) of them are **bad** because of negative coefficients.

<u>Problem 1</u>: if $\overline{A} \in \mathbb{R}^{3 \times d}$ with $d \gg 3$, then

 $\min_{x\in\mathbb{R}^d} \|y-Ax\|_2^2$

has infinitely many solution, $x_0^* + z$ with $z \in \text{Ker}(A)$. Most (all?) of them are **bad** because of negative coefficients.

Problem 2: without nonnegativity, then

$$\min_{A \in \mathbb{R}^{3 \times r}, x_i \in \mathbb{R}^r} \sum_{i} \|y_i - Ax_i\|_2^2$$

<u>Problem 1</u>: if $A \in \mathbb{R}^{3 \times d}$ with $d \gg 3$, then

 $\min_{x\in\mathbb{R}^d} \|y - Ax\|_2^2$

has infinitely many solution, $x_0^* + z$ with $z \in Ker(A)$. Most (all?) of them are **bad** because of negative coefficients.

Problem 2: without nonnegativity, then

$$\min_{A \in \mathbb{R}^{3 \times r}, x_i \in \mathbb{R}^r} \sum_i \|y_i - Ax_i\|_2^2$$

has again infinitely many **bad** (negative) solutions, even for r = 2 using for instance the truncated SVD of $Y = [y_1, \ldots, y_n]$.

<u>Outline</u>

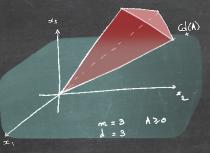
Nonnegative Least Squares
 Theory
 Algorithms
 Matrix and tensor rank
 Matrix rank
 Nonnegative rank
 Tensor (nonnegative) rank

II. Nonnegative Least Squares

<u>Cones</u>

$\frac{\text{Definition}}{\text{For a given matrix } A \in \mathbb{R}^{m \times d}, \text{ let } \operatorname{col}_+(A) = \{Ax \mid x \geq 0\}.$

Proposition: For any matrix A, the set $col_+(A)$ is a convex cone, *i.e.* $\lambda_1 x_1 + \lambda_2 x_2 \in col_+(A)$ if $x_1, x_2 \in col_+(A)$ and $\lambda_1, \lambda_2 \ge 0$.

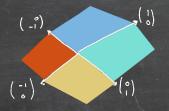


10/92

<u>Cones</u>

The cone $col_+(A)$ may not be have low-dimensional facets.

$$\mathsf{col}_+\left(\left[egin{array}{cccc} 1 & 0 & -1 & 0 \ 0 & 1 & 0 & -1 \end{array}
ight]
ight)=\mathbb{R}^2$$



(but it's all fine when $A \ge 0$)

NNLS formulation

Definition: The NNLS problem is equivalently defined as 1. Find $x \in \underset{x \in \mathbb{R}^d_+}{\operatorname{argmin}} \|y - Ax\|_2^2$ 2. Find $b \in \operatorname{col}_+(A)$ and $x \in \mathbb{R}^d_+$ s.t. b = Ax, $b = \prod_{\operatorname{col}_+(A)}^{\perp}(y)$

 $b = \underset{2 \in cd_{+}(A)}{\operatorname{an}} \left\| y - z \right\|_{\ell}^{2} = A x$

A few questions

Existence of solutions?

Uniqueness of *b*, of *x*?

Properties of a solution x?

b exists and is unique

 $\frac{\text{Proposition:}}{\text{For any } A \in \mathbb{R}^{m \times d}, \text{ the map}}$

 $y
ightarrow \Pi^{\perp}_{\mathsf{col}_{+}(A)}(y)$

is well defined.

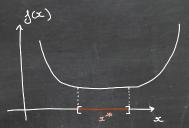
Proof idea:

The map $f : z \to ||y - z||_2^2$ is coercive and continuous. Because $\operatorname{col}_+ A$ is closed, f must attain its minimum value on $\operatorname{col}_+(A)$. Further, f strongly convex in $\mathbb{R}^{m \times d}$, thus in particular on its restriction to the convex set $\operatorname{col}_+(A)$. Strongly convex functions admit unique global minimizers when they exist.

NNLS: convexity

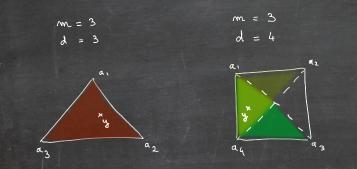
$$\underset{x \ge 0}{\operatorname{argmin}} \|y - Ax\|_2^2$$
 (NNLS)

Problem (NNLS) is convex but not strictly convex unless A is fcr. Therefore, there does not exist a unique solution x in general.



x uniqueness: exact case (interior)

Suppose that y lies in the interior of col₊(A). Then
▶ the projection b is y itself and y = Ax always exists,
▶ if d > m, there is little hope for uniqueness.
▶ if d < m and A is full column rank, then x is unique.



x uniqueness: exact case (border)

Informally, if y belongs to a facet of $col_+(A)$, then there exist k s.t.

 $y = Ax, \ x \ge 0, \ \|x\|_0 \le k < m$

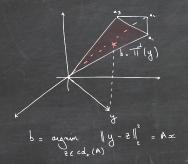


Illustration on Problem 1

<u>Problem 1</u>: paint color y as well as possible using paint pots A.

So far,

▶ There is always a best color approximation of y with pots A.
 ▶ When A has more than 3 colors, if y ∈ col₊(A), in general there are several solutions.

Illustration on Problem 1

<u>Problem 1</u>: paint color y as well as possible using paint pots A.

So far,

▶ There is always a best color approximation of y with pots A.
▶ When A has more than 3 colors, if y ∈ col₊(A), in general there are several solutions.

What about when $y \notin \operatorname{col}_+(A)$?

Approximate case: the main result

<u>Theorem</u> (Night Sky Theorem [Byrne 1981]): Suppose that

 $y \notin \operatorname{col}_+(A)$, spark(A) > m.

Then there is a unique solution the NNLS problem, which has most m - 1 nonzeros.

A detour by KKT

For a convex problem

 $\min_{x \in \mathbb{R}^d} f(x)$, s.t. $g(x) \le 0$, f, g convex with an admissible solution, considering $\mathcal{L}(x,\lambda) = f(x) + \langle \lambda, g(x) \rangle.$ x^* is a solution iff there exist λ^* s.t. $g(x^*) \leq 0, \quad \lambda^* \geq 0, \quad \forall i \leq d, \lambda_i^* \overline{g_i(x_i^*)} = 0$ $\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x}^*,\lambda^*)=0$

20/92

Back to approximate NNLS

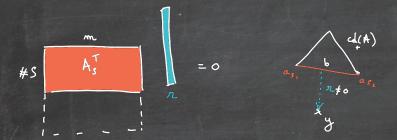
$$\nabla_x \|y - Ax\|_2^2 = 2A^T (Ax - y)$$

The KKT conditions are

 $\begin{array}{c} \hline x^* \geq 0, \quad \lambda^* \geq 0, \quad \lambda^*_i x^*_i = 0 \\ \\ 2A^T (Ax^* - y) - \lambda^* = 0 \\ \end{array}$ In particular, when $x^*_i > 0, \lambda^*_i = 0$, thus on the support S of x^* , $\begin{array}{c} A^T_S (Ax^* - y) = 0 \end{array}$

A marvelous equation

 $\overline{A_S^T(Ax^*-y)}=0 \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} \overline{A_S^Tr}=0, \hspace{0.2cm} r=y-b^*$



22/92

As long as $r \neq 0$ and any A_S is fcr,

- ► #*S* < *m*
- ▶ For any $i \in S$, $a_i \in \operatorname{col}_{\perp}(r) := \mathcal{H}$

End of proof and computation of x^*

Any solution has its support in $S^* = \{i \leq d, a_i \in \mathcal{H}\}$. Moreover, the linear system

$$A_{S^*}z = b$$

has a unique solution for fcr A_{S^*} .

Consequently, once the support of a solution S^* is known, within the hypotheses of the Night Sky Theorem, the unique solution is obtained by

$$x^* = A_{S^*}^{\dagger} y$$

where A^{\dagger} is the pseudo-inverse of A_{S^*} .

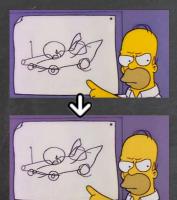
Illustration on Problem 1

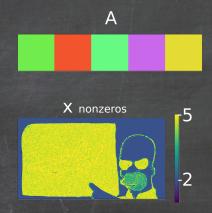
Problem 1: paint color y as well as possible using paint pots A.

▶ There is always a best color approximation of y with pots A.
▶ When A has more than 3 colors, if y ∈ col₊(A), in general there are several solutions.

If $y \notin \operatorname{col}_+(A)$, with high probability, there is a unique solution.

Illustration on Homer





How to solve NNLS??

Active set in NNLS

Proposition: (admitted for exact case) Any NNLS problem has a solution x with at most m non-zeros.

If we know the support S of that solution, then

 $\underset{z \in \mathbb{R}^{\#S}}{\operatorname{argmin}} \|y - A_S z\|_2^2$

is solved in closed form and yields the solution (KKT).

The LH active set algorithm

Idea: (Lawson and Hanson (1974)

- 1. Start with empty support S
- 2. Add a columns of A greedily to S
- 3. Compute the projection on $col(A_S)$
- 4. Stop if KKT conditions are met
- 5. If projection has negative coefficients, move along the update until no negatives are left
- 6. return to 2)

The LH active set algorithm

Idea: (Lawson and Hanson (1974)

- 1. Start with empty support S
- 2. Add a columns of A greedily to S
- 3. Compute the projection on $col(A_S)$
- 4. Stop if KKT conditions are met
- 5. If projection has negative coefficients, move along the update until no negatives are left
- 6. return to 2)

The selection rule

 $S \leftarrow S \cup \underset{j \notin S}{\operatorname{argmax}} \langle a_j, r \rangle$ where $r = y - \prod_{A_S}^{\perp}(y) =: y - Ax^S$

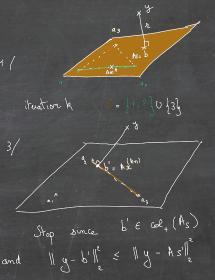
Recall KKT conditions

$$\lambda_{j}^{*} \geq 0, \hspace{1em} 2\langle a_{j}, y - Ax^{*}
angle = -\lambda_{j}^{*}$$

The column with "most negative" Lagrange multiplier is chosen. The error min_z $||y - A_{SZ}||_2^2$ can only go down in this step.

The backward step

 $2/b \notin Col_{+}(A_{s})$, As' $\in Col_{+}(A_{p,s})$, 1/



30/92

AS algorithm pros and cons

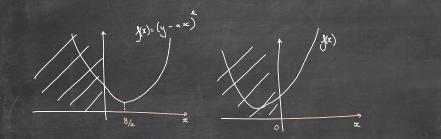
Finite number of iterations
Fast if warm start
Early stop

May test all supports
 Cold start is often slow
 No matrix version

A Block-Coordinate algorithm

Observation: The scalar problem is solved in closed form

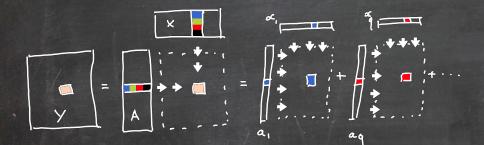
$$\underset{x \in \mathbb{R}_+}{\operatorname{argmin}} (y - ax)^2 = \left[\frac{y}{a}\right]^2$$



 $\underset{x \in \mathbb{R}_{+}}{\operatorname{argmin}} \|y - ax\|_{2}^{2} = \frac{1}{\|a\|_{2}^{2}} \left[a^{T}y\right]^{+} \quad \underset{x^{T} \in \mathbb{R}_{+}^{n}}{\operatorname{argmin}} \|Y - ax^{T}\|_{F}^{2} = \frac{1}{\|a\|_{2}^{2}} \left[a^{T}Y\right]^{+}$ 32/92

Matrix Multiplication?

$$Y=AX, \quad Y_{jj}=\sum_{q=1}^d A_{jq}X_{qj}, \quad Y=\sum_{q=1}^d a_q\otimes x_q$$



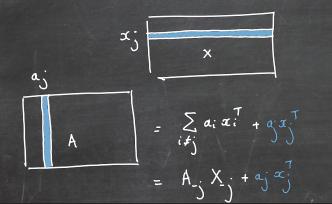
https://ncase.me/matrix/

33/92

Solving per row

We solve several NNLS problems with $Y = [y_1, \dots, y_n]$ and $X = [x_1, \dots, x_n]$, *i.e.*

 $\underset{X \in \mathbb{R}^{d \times \hat{n}}_{+}}{\operatorname{argmin}} \|Y - AX\|_{F}^{2}$



34/92

A block coordinate algorithm solves

$$\underset{x_{j}\in\mathbb{R}_{+}^{n}}{\operatorname{argmin}} \|(Y-A_{-j}X_{-j})-a_{j}x_{j}\|_{F}^{2}$$

for each x_i alternatively until convergence.

Proposition: [Bertsekas 1995, earlier?] As long as A has no zero column, the HALS iterates converge towards a minimizer of NNLS.

HALS pseudocode

Algorithm 1 HALS for NNLS

Inputs: Y, Awhile Convergence is not met do for j in [1..d] do Compute $Z = Y - A_{-j}X_{-j}$ If $a_j \neq 0$, set $x_j = \left[\frac{a_j^T Z}{\|\|a_j\|_2^2}\right]^+$ end for end while

Improvable by pre-allocation, see NMF section.

HALS pros and cons

Flexible (similar problems)
 Early stop
 BLAS3 matrix version

Infinite number of steps
 Slower than AS if very good start

A remark

$$x \leftarrow \frac{1}{\|\boldsymbol{a}\|_2^2} \left[\boldsymbol{a}^T \boldsymbol{Y} \right]^+$$

is exactly

- ► a projected least squares update.
- a projected gradient step with the Lipschitz constant as inverse stepsize.
- ► a Gauss-Newton step.

$$abla_{x}\left[\frac{1}{2}\|Y-ax\|_{F}^{2}\right](x) = -a^{T}Y + \|a\|_{2}^{2}x$$

We can use that logic to derive HALS for NNLS variants.

HALS for sparse NNLS

Let $\lambda > 0$ and consider

$$\underset{X \in \mathbb{R}^{d \times n}_{+}}{\operatorname{argmin}} \frac{1}{2} \|Y - AX\|_{F}^{2} + \lambda \|X\|_{1}$$

To obtain the HALS update rule, consider

$$\underset{x_{j} \in \mathbb{R}_{+}^{n}}{\operatorname{argmin}} h_{j}(x_{j}) := \frac{1}{2} \|Z_{j} - a_{j}x_{j}\|_{F}^{2} + \lambda \|x_{j}\|_{1}$$

By setting

$$\nabla_{\mathbf{x}} h_j(\mathbf{x}) = -a_j^T Z_j + \|a_j\|_2^2 \mathbf{x} + \lambda \mathbf{1}$$

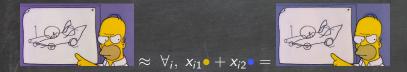
to zero, solving and projecting, we get

$$x_j^* = \left[rac{oldsymbol{a}_j^T Z_j - \lambda \mathbb{1}}{\|oldsymbol{a}_j\|^2}
ight]^+$$

III. Matrix and Tensor rank(s)

Back to the fil rouge

<u>Problem 2:</u> given a painting $\{y_i\}_{i \le n}$, find its closest 2-color version. Find $A \in \mathbb{R}^{3 \times 2}_+$ and $x_i \in \mathbb{R}^2_+$ such that $\forall i \le n, y_i \approx A x_i$



Back to the fil rouge

<u>Problem 2:</u> given a painting $\{y_i\}_{i \le n}$, find its closest 2-color version. Find $A \in \mathbb{R}^{3 \times 2}_+$ and $x_i \in \mathbb{R}^2_+$ such that $\forall i \le n, y_i \approx A x_i$

A NNLS problem for each A??

Matrix rank

<u>Definition</u>: For some matrix $Y \in \mathbb{R}^{m \times n}$, a factorization

$$Y = \sum_{q=1}^d a_q \otimes x_q = AX$$

is called a rank-d decomposition of Y for $d \leq \min(m, n)$.

Definition:

The rank of a matrix Y is the smallest d such that Y admits a rank-d decomposition,

$$\min\left\{d\in\mathbb{N}, \ Y=\sum_{q\leq d}a_q\otimes x_q\right\}$$

Matrix rank facts

The following other definitions of rank are equivalent:

- Dimension of column space of Y
- Dimension of row-space of Y
- Largest square submatrix B of Y with det $(B) \neq 0$
- Dimension of the Kernel of Y
- Number of positive singular values of Y

Also, it holds that

 \blacktriangleright rank(Y) \leq min(m, n)

For a "generic" Y, rank(Y) = min(m, n)

The set $\{Y, rank(Y) \leq d\}$ is closed.

Matrix rank facts

The following other definitions of rank are equivalent:

- Dimension of column space of Y
- Dimension of row-space of Y
- Largest square submatrix *B* of *Y* with det $(B) \neq 0$
- Dimension of the Kernel of Y
- Number of positive singular values of Y

Also, it holds that

- rank(Y) \leq min(m, n)
- For a "generic" Y, rank(Y) = min(m, n)

The set $\{Y, \operatorname{rank}(Y) \leq d\}$ is closed.

A reformulation of Problem 2

Let us drop nonnegativity for now. Then Problem 2 boils down to

$$\underset{Z \in \mathbb{R}^{m \times n}}{\operatorname{argmin}} \|Y - Z\|_F^2 \text{ s.t. } \operatorname{rank}(Z) \leq d$$

For the 2-color best painting, we set d = 2. This is the projection on the set of low-rank matrices.

Proposition:

(i) A best low-rank approximation Z* always exists.
(ii) A solution is known in closed form by considering the SVD

$$Y = U\Sigma V^T, \ U^T U = I_m, \ V^T V = I_n, \ \Sigma_{ij} = \sigma_i \delta_{ij}$$

and truncating the rank(A) - d smallest singular values. (iii) If the *d*th singular value is simple then Z^* is unique.

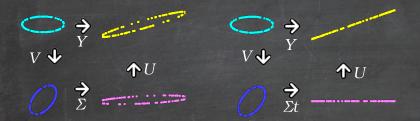
A short focus on SVD

Singular Value Decomposition: For any $Y \in \mathbb{R}^{m \times m}$ there exist orthogonal matrices $U, V \in \mathbb{R}^{m \times m}$ and a nonnegative diagonal matrix $\Sigma \in \mathbb{R}^{m \times m}_+$ such that

 $Y = U\Sigma V$

A linear map is a rotation, a scaling/projection, and a rotation.

A short focus on tSVD



 V, Σ, U applied sequentially

Rank-one approximation

Intuition:

$$||Y - Z||_{F}^{2} = ||U\Sigma V^{T} - Z||_{F}^{2}$$

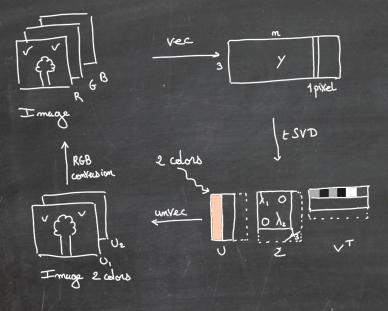
= $||\Sigma - U^{T}ZV||_{F}^{2}$
= $||\Sigma - \tilde{Z}||_{F}^{2}$

We can guess that

$$\min_{\mathsf{rank}(ilde{Z})\leq d} \|\Sigma- ilde{Z}\|_{\mathsf{F}}^2 = \min_{\|z\|_0\leq d} \|s-z\|_2^2$$

where $Diag(s) = \Sigma$. Finally $Z^* = U\Sigma(1:d)V^T$. Actual proof on Wikipedia!

Did we solve Problem 2?



Did we? Your opinion.

Vote at https://www.wooclap.com/ITWISTQ2

Lunch break!!

Nonnegative Rank

The SVD rarely provides nonnegative entries for U, V except for d = 1, see Perron-Frobenius Theorem. We need nonnegativity constraints!!

Definition:

Let $Y \in \mathbb{R}^{m \times n}_+$ a nonnegative matrix. A nonnegative matrix factorization of Y is a factorization

$$Y = AX$$

for $A \in \mathbb{R}^{m \times d}_+$ and $X \in \mathbb{R}^{d \times n}_+$. The smallest such *d* is the nonnegative rank of *Y*, *i.e.*

$$\mathsf{rank}_+(Y) = \mathsf{min}\left\{ d \in \mathbb{N}, \ Y = \sum_{q=1}^d a_q \otimes x_q \ \mathsf{and} \ a_q \geq 0, x_q \geq 0
ight\}$$

Tensor rank

In this talk, tensors are multidimensional arrays $\mathcal{T} \in \mathbb{R}^{m imes n imes p}$.

<u>Definition</u>: Let $Y \in \mathbb{R}^{m \times n \times p}$ a tensor. A rank *d* decomposition of Y is a factorization

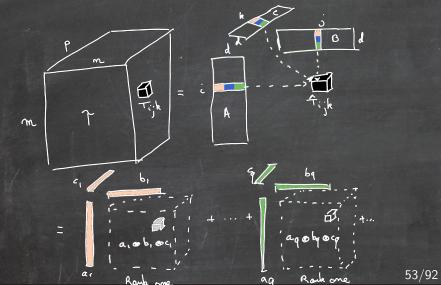
$$Y_{ijk} = \sum_{q=1}^{a} A_{iq} B_{jq} C_{kq}$$

for $A \in \mathbb{R}^{m \times d}$, $B \in \mathbb{R}^{n \times d}$ and $C \in \mathbb{R}^{p \times d}$. The smallest such *d* is the rank of *Y*, *i.e.*

$$\mathsf{rank}(Y) = \mathsf{min}\left\{ d \in \mathbb{N}, \ Y = \sum_{q=1}^d a_q \otimes b_q \otimes c_q
ight\}$$

Rank decomposition

Others names: CPD, PARAFAC, CANDECOMP...



Computing the rank?

Computing or guessing the rank is extremely difficult in general, except for the matrix rank.

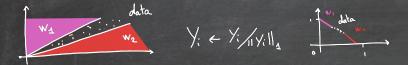
54/92

IV. Nonnegative Matrix Factorization

Exact and approximate NMF

Exact NMF (known rank d):

Find $W \in \mathbb{R}^{m \times d}_+, H \in \mathbb{R}^{d \times n}_+$ s.t. Y = WH



Approximate NMF (fixed approx. rank d, Frobenius loss):

Solve $\underset{W \in \mathbb{R}^{m \times d}_{+}, H \in \mathbb{R}^{d \times n}_{+}}{\operatorname{argmin}} \|Y - WH\|_{F}^{2}$

Nonconvex problem! But convex constraints!

A little experiment

We have painted Homer with 2 colors using NNLS.

57/92

This image has nonnegative rank 2.

A little experiment

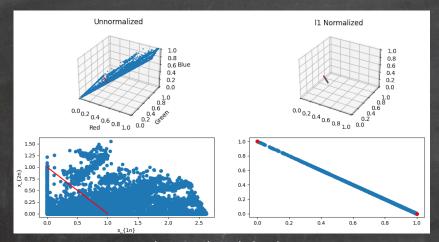
<u>Goal:</u> Recover the two colors that were used.

<u>Procedure</u>: Compute 9 times a rank-2 NMF of the matrix $Y \in \mathbb{R}^{3 \times d}_+$ with an alternating HALS algorithm (see later). Initialized with $W_{ij} \sim \text{abs}(\mathcal{N}(0, 1))$

A little experiment

What will happen? Vote: https://www.wooclap.com/ITWISTQ3

A little experiment: data



red: ground truth 2-colors

A little experiment: reconstructions

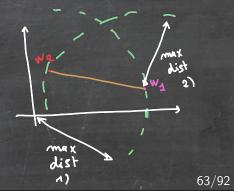
A little experiment: colors

Wait a minute...

The exact rank-2 NMF problem looks actually easy.

- Normalize data
- Select column of maximal I2 normal $ightarrow W_1$
- Find its furthest column $\rightarrow W_2$
- Solve the strongly convex resulting NNLS problem \rightarrow H

Proposition: The exact rank-2 NMF problem is in PTIME(n).



Rank > 3

Let's build a harder instance of Exact NMF. Let $Y \in \mathbb{R}^{4 \times n}_+$ with no zero column.

Normalization:

$$Y = WH \equiv YD_Y^{-1} = WD_W^{-1}D_WHD_Y^{-1}$$

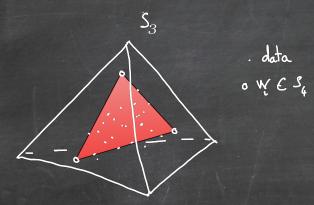
so that Y and W may wlog belong to the simplex S_3 . Furthermore,

$$\|Y_i\|_1 = 1 = \left\|\sum_q W_{:q}H_{qi}\right\|_1 = \ldots = \|H_{:i}\|_1$$

so that H is also normalized.

Rank > 3

Proposition: [Vavasis2007] Exact NMF with rank 3 < d < m as part of the input is NP-hard.



In fact this problem is still in P [Silio 1979, Agrawal 1989], nontrivially. More in the NMF book [Gillis 2020].

65/92

A comparison with sparse coding

Sparse coding

 $\min_{x \in \mathbb{R}^d} \|x\|_0 \text{ s.t. } y = Ax$

is NP-hard(d), but when fixing some sparsity k < d,

Find $x \in \mathbb{R}^d$, $||x||_0 = k$ s.t. y = Ax

is in P(d), since it is enough to test all $\binom{d}{k} \sim \mathcal{O}(d^k)$ supports.

Approximate NMF is hard

Even rank 2 approximate NMF of a rank $d \ge 3$ matrix is hard!

<u>67/92</u>

And even rank 1 approximate NMF of a matrix with negative entries is NP-hard.

It's all nice, but how to compute (approximate) NMF?

Alternating Algorithms

Algorithm 2 A general alternating algorithm for NMF

- 1: Inputs: Y, d, W^0
- 2: Set k = 0
- 3: while Stopping criterion is not met do
- 4: Update H^{k+1} with fixed W^k
- 5: Update W^{k+1} with fixed H^{k+1}

6: end while

Convergence as a BCD algorithm [Bertsekas] if each NNLS has a unique solution (hard to check).

Alternating Algorithms

Algorithm 3 HALS algorithm for NMF

- 1: Inputs: Y, d, W^0
- 2: Set k = 0
- 3: while Stopping criterion is not met do
- 4: Update H^{k+1} with fixed $W^k \leftarrow \text{NNLS}$ HALS solver
- 5: Update W^{k+1} with fixed $H^{k+1} \leftarrow \text{NNLS}$ HALS solver 6: end while

Convergence guarantied by the PALM framework [Bolte 2014] when no columns of W, H^T are null through the iterations. Indeed HALS is exactly an alternating proximal gradient with Lipschitz step.

A second look at NNLS HALS

Algorithm 4 HALS for NNLS, solving for H

Inputs: Y, W, H^0 while convergence criterion is not met do for q in [1..d] do Compute $Z = Y - W_{-q}H_{-q}$ If $W_q \neq 0$, set $H_q = \left[\frac{W_q^T Z}{\|W_q\|_2^2}\right]^+$ end for end while

A second look at NNLS HALS

Algorithm 4 HALS for NNLS, solving for H

Inputs: Y, W, H^0 while convergence criterion is not met do for q in [1..d] do Compute $Z = Y - W_{-q}H_{-q}$ If $W_q \neq 0$, set $H_q = \left[\frac{W_q^T Z}{\|W_q\|_2^2}\right]^+$ end for end while

Important tweaks:

Precompute WtW := W^TW, WtY := W^TY
 Early stop, e.g. when ||Y - WH||²_F < 10⁻⁴ ||Y - WH⁰||²_F
 Warm start H⁰ from the previous outer loop in NMF HALS

Application 1: automatic transcription

Data:

An audio recording.

Procedure:

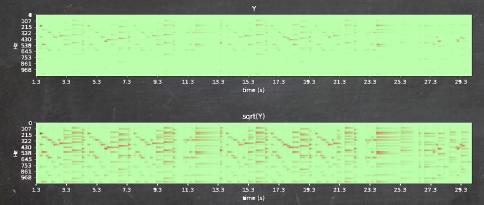
Form a time-frequency matrix $Y \in \mathbb{R}^{n \times m}_+$

▶ Perform a rank d NMF of Y.

In principle, identify notes and activations to produce MIDI Soals:

Recover the music sheet solely from the audio

Application 1: automatic transcription

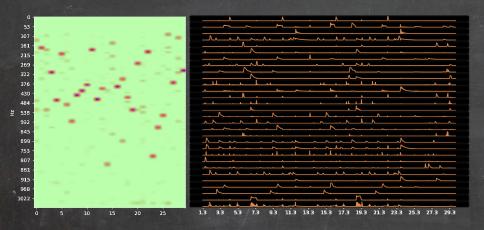


Application 1: easy case

Only the first 3 seconds, isolated notes!



Application 1: hard case



Application 2: Text mining for newbies

<u>Data</u>:

A collection of m = 8 text files, collected from web articles.
 A dictionary of semantically useless words (from sklearn).
 <u>Procedure</u>:

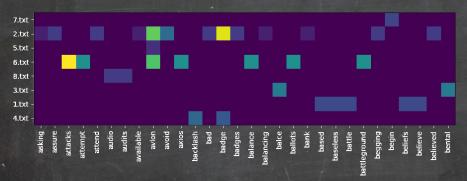
- Form a frequency matrix $Y \in \mathbb{R}^{8 \times n}_+$ (with sklearn)
- n is the number of different words in the files.
- ▶ Perform a rank 3 NMF of Y.

Goals:

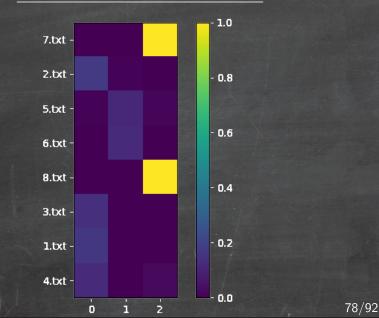
- Classify articles automatically
- Uncover hidden patterns in articles
- Generally speaking, extract information

Application 2: data

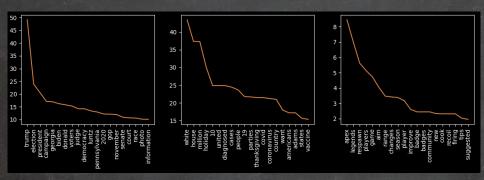
A few columns of the Y matrix



Application 2: Estimated W



Application 2: Estimated H



Other NMF concepts

Separable NMF: [Arora 2012, Gillis 2013, \ldots] Columns of W are in the data. Exact separable NMF is in P, but near-separable NMF is NP-hard.

 $\frac{1}{\substack{\mathsf{argmin}\\\mathsf{S}\in\mathcal{P}_d([1,n]),\ H\geq 0}} \|Y-Y_{\mathsf{S}}H\|_F^2$

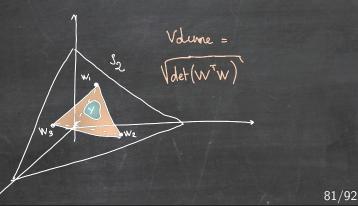
 $W_1 = Y_1$

 $Y = \left[Y_{j_1} \times Y_{j_2} \times Y_{j_3} \right] H$

Other NMF concepts

<u>Minimum volume NMF</u>:[Fu and Huang 2016] Penalize the volume of Conv(*W*). May lead to unique *W* and *H*!

 $\frac{\operatorname{argmin}}{W \ge 0, W^{T} \mathbb{1}_{m} = \mathbb{1}_{d} H \ge 0} \frac{\|Y - WH\|_{F}^{2} + \lambda}{\|\log \det(W^{T}W + \delta I_{d})\|_{F}^{2}}$



Other NMF concepts: β -divergence NMF

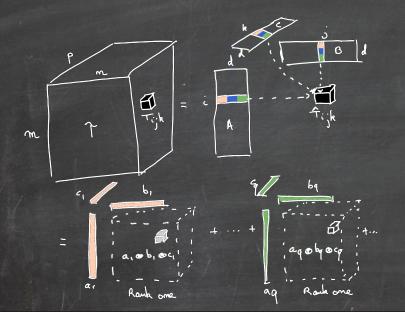
Change the cost to

$$d_{\beta}(x,y) = \begin{cases} \frac{1}{\beta(\beta-1)} (x^{\beta} + (\beta-1)y^{\beta} - \beta x y^{(\beta-1)}) & \text{if } \beta \notin \{0,1\} \\ x \log \frac{x}{y} - x + y & \text{if } \beta = 1 \text{ (KL div)} \\ \frac{x}{y} - \log \frac{x}{y} - 1 & \text{if } \beta = 0 \text{ (IS div)} \end{cases}$$

and solve

typically with multiplicative updates [Fevotte Idier 2011].

IV. Nonnegative Tensor Factorization



NTF: similarities with NMF

A few equivalent formulations of exact NTF:

$$\mathcal{T}_{ijk} = \sum_{q=1}^{d} W_{iq} \mathcal{H}_{jq} \mathcal{C}_{kq} = \sum_{q=1}^{d} w_q \otimes h_q \otimes c_q$$

 $Y_k := T_{::k} = W \mathsf{Diag}(C_{k:}) H^T$

NTF can be seen as a collection of NMFs with the same W, H up to nonnegative scaling!

Moreover,

$$\mathop{\mathrm{argmin}}_{N,H,C\geq 0} \|\mathcal{T}-\sum_{q=1}^d w_q\otimes h_q\otimes c_q\|_F^2$$

is still a NNLS problem with respect to one factor, *e.g.* H. This problem always has a solution, which is generically unique [Qi 2016]. Factors W, H, C are often unique too!.

Complexity recap

Low Rank Approximation:

$$rgmin_{Z\in \mathbb{R}^{m imes n(imes p)}_{(+)}} \|Y-Z\|_F^2$$
 s.t. $\mathrm{rank}_{(+)}(Z) \leq d$

Table: Properties of ranks [Lim2013, Vavasis2007, Friedland2013, Qi2016]

	mat. rank	mat. rank $_+$	ten. rank	ten. rank $_+$
exact	Р	NP-hard	?	?
approx	Р	NP-hard	NP-h., ill-posed	?
unique Z	Generic	Generic	ill-posed	Generic
unique A, X	No	No	Generic	Generic
algorithm	tSVD	Heuristics	∞	Heuristics
				86/92

NTF: applying HALS

Computing the gradient: One can check that

$$abla_{c} [w \otimes h \otimes c] (w, h, c) = w^{*} \otimes h^{*} \otimes I_{p}$$

and therefore

$$\frac{1}{2} \nabla_{c_1} = -(w_1^* \otimes h_1^* \otimes I_p) \left(T - \sum_{q=1}^d w_q \otimes h_q \otimes c_q \right)$$

$$= -w_1^T T h_1 + \sum_{q=2}^d \langle w_1, w_q \rangle \langle h_1, h_q \rangle c_q + \|w_1\|_2^2 \|h_1\|_2^2 c_1$$

87/92

One should precompute $w_q^T Th_q \forall q \leq d$, $W^T W$ and $H^T H$.

NNLS for NTF

Algorithm 5 HALS for NNLS for NTF

Inputs: T, W, H, Cwhile Convergence is not met do for j in [1..d] do Compute $Z = T - \sum_{q \neq j} w_q \otimes h_q \otimes c_q$ If $w_j \neq 0$ and h_j , set $c_j = \left[\frac{w_j^T Z h_j}{\|w_j\|_2^2 \|h_j\|_2^2}\right]^+$ end for end while

An application of NTD to chemometrics

Material:

Several mixtures of 3 fluorescent chemicals, in various concentrations.

Procedure:

Measure excitation-emission for each sample, stack in a tensor Y.

Perform a rank 3 approximate NTF of Y.

Goals:

Tryptophan-Glycine

Valyne Tyrose Valine

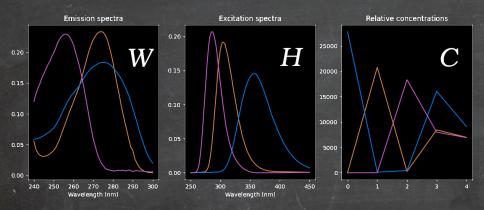
Phenylalanine

89/92

Mixed Spectra

Unmixed Spectra

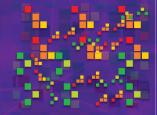
An application of NTD to chemometrics



To go (much) further

Data Science Book Series

Nonnegative Matrix Factorization



Nicolas Gillis

siam.

Take home message: Stay Positive Nonnegative!

