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Roadmap

1 An introduction to tensor methods

2 Nonnegative Tucker decomposition of music for automatic segmentation

3 Heuristic extrapolation of alternating algorithms for nonnegative tensor decomposition
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Separability: a fundamental property

Definition: Separability
Let 𝑓 ∶ ℝ × ℝ × ℝ → ℝ. Map 𝑓 is said to be separable if there exist real maps 𝑓1, 𝑓2, 𝑓3 so that

𝑓(𝑥, 𝑦, 𝑧) = 𝑓1(𝑥)𝑓2(𝑦)𝑓3(𝑧)

Of course, any order (i.e. number of variables) is fine.

Examples:

(𝑥𝑦𝑧)𝑛 = 𝑥𝑛𝑦𝑛𝑧𝑛 , 𝑒𝑥+𝑦 = 𝑒𝑥𝑒𝑦, ∫
𝑥

∫
𝑦

ℎ(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦 = (∫
𝑥

ℎ(𝑥)𝑑𝑥) (∫
𝑦

𝑔(𝑦)𝑑𝑦)

Some usual function are not separable, but are written as a few separable ones!
• cos(𝑎 + 𝑏) = cos(𝑎) cos(𝑏) − sin(𝑎) sin(𝑏)
• log(𝑥𝑦) = log(𝑥)1𝑦∈ℝ + 1𝑥∈ℝ log(𝑦)
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Separability and matrix rank

Now what about discrete spaces? (𝑥, 𝑦, 𝑧) → {(𝑥𝑖, 𝑦𝑗, 𝑧𝑘)}𝑖∈𝐼,𝑗∈𝐽,𝑘∈𝐾
→ Values of 𝑓 are contained in a tensor 𝒯𝑖𝑗𝑘 = 𝑓(𝑥𝑖, 𝑦𝑗, 𝑧𝑘).

Example: 𝑒𝑥𝑖 is a vector of size 𝐼. Let us set 𝑥𝑖 = 𝑖 for 𝑖 ∈ {0, 1, 2, 3}.

⎡
⎢
⎢
⎣

𝑒0

𝑒1

𝑒2

𝑒3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑒0𝑒0

𝑒0𝑒1

𝑒2𝑒0

𝑒2𝑒1

⎤
⎥
⎥
⎦

= [ 𝑒0

𝑒2 ] ⊗𝐾 [ 𝑒0

𝑒1 ]

Here, this means that a matricized vector of exponential is a rank one matrix.

[ 𝑒0 𝑒1

𝑒2 𝑒3 ] = [ 𝑒0

𝑒2 ] [ 𝑒0 𝑒1 ] = [ 𝑒0

𝑒2 ] ⊗ [ 𝑒0

𝑒1 ]

Setting 𝑖 = 𝑗21 + 𝑘20, 𝑓(𝑗, 𝑘) = 𝑒2𝑗+𝑘 is separable in (𝑗, 𝑘).

Conclusion: A rank-one matrix can be seen as a separable function on a grid.
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Tensor rank?

We can also introduce a third-order tensor here:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑒0

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑒0𝑒0𝑒0

𝑒0𝑒0𝑒1

𝑒0𝑒2𝑒0

𝑒0𝑒2𝑒1

𝑒4𝑒0𝑒0

𝑒4𝑒0𝑒1

𝑒4𝑒2𝑒0

𝑒4𝑒2𝑒1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [ 𝑒0

𝑒4 ] ⊗𝐾 [ 𝑒0

𝑒2 ] ⊗𝐾 [ 𝑒0

𝑒1 ]

By “analogy” with matrices, we say that a tensor is rank-one if it is the discretization of a separable
function.
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From separability to matrix/tensor rank
From now on, we identify a function 𝑓(𝑥𝑖, 𝑦𝑗, 𝑧𝑘) with a three-way array 𝒯𝑖𝑗𝑘.

Definition: rank-one tensor
A tensor 𝒯𝑖𝑗𝑘 ∈ ℝ𝐼×𝐽×𝐾 is said to be a [decomposable] [separable] [simple] [rank-one] tensor iff there
exist 𝑎 ∈ ℝ𝐼, 𝑏 ∈ ℝ𝐽, 𝑐 ∈ ℝ𝐾 so that

𝒯𝑖𝑗𝑘 = 𝑎𝑖𝑏𝑗𝑐𝑘

or equivalently,
𝒯 = 𝑎 ⊗ 𝑏 ⊗ 𝑐

where ⊗ is a multiway equivalent of the exterior product 𝑎 ⊗ 𝑏 = 𝑎𝑏𝑡.

What matters in practice may be to find the right description of the inputs!!

=

𝑓(𝑥, 𝑦, 𝑧, 𝑡, … ) 𝒯 = 𝑎 ⊗ 𝑏 ⊗ 𝑐
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ALL tensor decomposition models are based on separability

Canonycal Polyadic Decomposition:

𝒯 = ∑𝑟
𝑞=1 𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞

=

𝒯 =

+ ⋯ +

𝑎1 ⊗ 𝑏1 ⊗ 𝑐1 + ⋯ + 𝑎𝑟 ⊗ 𝑏𝑟 ⊗ 𝑐𝑟
Tucker Decomposition:

𝒯 =
𝑟1,𝑟2,𝑟3

∑
𝑞1,𝑞2,𝑞3=1

𝑔𝑞1𝑞2𝑞3
𝑎𝑞1

⊗ 𝑏𝑞2
⊗ 𝑐𝑞3

≈

𝒯 ≈ (𝐴 ⊗ 𝐵 ⊗ 𝐶) 𝒢

Definition: tensor [CP] rank (also applies for other decompositions)
𝑟𝑎𝑛𝑘(𝒯) = min{𝑟 | 𝒯 = ∑𝑟

𝑞=1 𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞}

Tensor CP rank coincides with matrix “usual” rank! (on virtual board)



If I were in the audience, I would be wondering:
• Why should I care??

→ I will tell you now.
• Even if I cared, I have no idea how to know if my data is somehow separable or a low-rank tensor!

→ I don’t know, this is the difficult part but at least you may think about separability in the future.
→ It will probably not be low rank, but it may be approximately low rank!
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Making use of low-rank representations

Let 𝐴 = [𝑎1, 𝑎2, … , 𝑎𝑟], 𝐵 and 𝐶 similarly built.

Uniqueness of the CPD
Under mild conditions

𝑘𝑟𝑎𝑛𝑘(𝐴) + 𝑘𝑟𝑎𝑛𝑘(𝐵) + 𝑘𝑟𝑎𝑛𝑘(𝐶) − 2 ≥ 2𝑟, (1)

the CPD of 𝒯 is essentially unique (i.e.) the rank-one terms are unique.

This means we can interpret the rank-one terms 𝑎𝑞, 𝑏𝑞, 𝑐𝑞
→ Source Separation!

Compression (also true for other models)
The CPD involves 𝑟(𝐼 + 𝐽 + 𝐾 − 2) parameters, while 𝒯 contains 𝐼𝐽𝐾 entries.

If the rank is small, this means huge compression/dimentionality reduction!
• missing values completion, denoising
• function approximation
• imposing sparse structure to solve other problems (PDE, neural networks, dictionary learning…)
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The landscape of research on tensors
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My ongoing research projects

LoRAiA (ANR JCJC)
Semi-supervision and Tensors:

• Dictionaries/sparse coding
• Optimal Transport

with efficient
implementations/algorithms!

Automatic Transcription
With semi-supervision and NMF.

Tensoptly (Inria)
Tensorly optimization layer:

• Constrained models
• Faster algorithms
• Customization

Music Segmentation
PhD of Axel Marmoret.

Sparse/Fast Optimization
Long-term collaboration with N.
Gillis (UMONS).

Multimodality
Long-term collaboration with E.
Acar (SimulaMet).

A common trait: nonnegativity!
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Roadmap

1 An introduction to tensor methods

2 Nonnegative Tucker decomposition of music for automatic segmentation

3 Heuristic extrapolation of alternating algorithms for nonnegative tensor decomposition
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The NTD project in a glance
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A team effort

Axel Marmoret Nancy Bertin Frederic Bimbot Caglayan Tuna
Doctorant UR1 CR CNRS DR CNRS Ingénieur Inria

Axel Marmoret, Jérémy Cohen, Nancy Bertin, Frédéric Bimbot. Uncovering Audio Patterns in Music with
Nonnegative Tucker Decomposition for Structural Segmentation. ISMIR 2020 - 21st International Society
for Music Information Retrieval, Oct 2020, Montréal (Online), Canada. pp.1-7
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Segmenting a song?
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A word on the state-of-the-art
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Our idea: a chromagram tensor…
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…decomposed to find redundancies!

Approximate Nonnegative Tucker Decomposition 𝒳 ≈ (𝑊 ⊗ 𝐻 ⊗ 𝑄)𝒢
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Back to segmentation
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State-of-the-art unsupervised results!

Algorithm 𝑃0.5 𝑅0.5 𝐹0.5 𝑃3 𝑅3 𝐹3
NTD-based autosimilarity 53.3% 62.1% 56.6% 66.8% 78.1% 71.1%
Barwise chromagram autosimilarity 43.1% 45.7% 43.9% 64.8% 68.0% 65.8%
Foote Original 29.7% 22.3% 25.1% 63.9% 48.6% 54.5%
Novelty[Foote2000] Aligned 42.0% 30.0% 34.5% 67.1% 47.7% 55.0%

ConvexNMF[Nieto2013] Original 22.8% 21.5% 21.5% 46.8% 45.1% 44.7%
Aligned 31.6% 28.1% 28.8% 50.7% 45.4% 46.5%

Spectral Original 31.2% 30.5% 29.4% 60.7% 60.8% 58.1%
Clustering[McFee2014] Aligned 49.2% 45.0% 45.0% 65.5% 60.6% 60.3%

Table: Averaged segmentation scores, and their comparison with several “blind” reference methods.

Algorithm 𝑃0.5 𝑅0.5 𝐹0.5 𝑃3 𝑅3 𝐹3
NTD, with “oracle ranks” for each song 67.1% 78.2% 71.5% 78.5% 90.2% 83.1%
Neural Networks[Grill2015] 80.4% 62.7% 69.7% 91.9% 71.1% 79.3%

Table: Averaged segmentation scores in the “oracle ranks” condition, compared to the current state-of-the-art
(non-blind) method.
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An algorithmic road
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An algorithmic road
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Roadmap

1 An introduction to tensor methods

2 Nonnegative Tucker decomposition of music for automatic segmentation

3 Heuristic extrapolation of alternating algorithms for nonnegative tensor decomposition
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Another team effort

Andersen Ang Thi Khanh Hien Le Nicolas Gillis
Post-doc, Univ. Waterloo Post-doc, UMONS Ass. Prof, UMONS

A. M. S. Ang, J. E. Cohen, N. Gillis, L. T. K. Hien, ”Accelerating Block Coordinate Descent for
Nonnegative Tensor Factorization”, Numerical Linear Algebra Appl., 2021;e2373.
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Approximate CPD

• Often, 𝒯 ≈
𝑟

∑
𝑞

𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞 for small 𝑟.

• However, the generic rank (i.e. rank of random tensor) is very large.
• Therefore if 𝒯 = ∑𝑟

𝑞 𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞 + 𝒩 with 𝒩 some small Gaussian noise, it has
approximatively rank lower than 𝑟 but its exact rank is large.

Best low-rank approximate CPD
For a given rank 𝑟, the cost function

𝜂(𝐴, 𝐵, 𝐶) = ‖𝒯 −
𝑟

∑
𝑞=1

𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞‖2
𝐹

has the following properties:
• it is infinitely differentiable.
• it is non-convex in (𝐴, 𝐵, 𝐶), but quadratic in 𝐴 and 𝐵 and 𝐶.
• its minimum may not be attained (ill-posed problem).
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Approximate Nonnegative CPD

Low-rank 𝑟 approximate NCPD
Given a tensor 𝒯, find tensor 𝒢∗ = ∑𝑟

𝑞=1 𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞 that minimizes

𝜂(𝐴, 𝐵, 𝐶) = ‖𝒯 −
𝑟

∑
𝑞=1

𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞‖2
𝐹 so that 𝑎𝑞 ≥ 0, 𝑏𝑞 ≥ 0, 𝑐𝑞 ≥ 0

• The minimum is always attained (coercivity)!
• The cost is not smooth anymore.

Well-posedness
Approximate NCPD is well posed:

• the best low nonnegative rank approximation 𝒢∗ exists. [Lim, Comon 2009]
• most of the time, tensor 𝒢∗ is unique [Qi, Lim, Comon 2016]

My favorite class of algorithms to solve aNCPD: block-coordinate descent!
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Nonconvex optimization algorithms, an incomplete list

All at once
• Conjugate gradient
• ADMM
• Nonlinear Least Squares (second order)
• Levenberg Marquardt

nonnegativity imposed by interior point methods,
squaring or active set.

X ADMM < AOADMM, PG < APG
X Typically slower than BCD
O Very efficient near optimum

Block coordinate (alternating)
• Alternating proximal gradient
• Alternating nonnegative least squares (ANLS)
• HALS
• Multiplicative updates
• AOADMM

nonnegativity imposed mostly by proximal step.

O Easy to design and implement
O Convex optimization tools
O Fast in practice
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Problematic

Be cheap, be fast.
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How to make tensor algorithms faster?

HPC
Not my expertise…

• n-mode product
• NNLS
• ??

Sampling and
Randomization

• Compression
• Sketching
• Subtensor sampling
• Fiber sampling
• Element-wise sampling

Acceleration

• Adagrad
• Momentum
• Quantification
• Extrapolation

−𝜂∇𝑦𝑘
𝑓

𝛽Δ𝑥

𝑦𝑘

𝑥𝑘+1

𝑥𝑘

𝑦𝑘+1
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Problematic

Be cheap, be fast.

Proposed solution: Extrapolated ANLS.

But first, a few reminders.



Some reminders on optimization:
• ANLS
• Nonnegative least squares
• Nesterov Extrapolation

31/40
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Reminder 1: Alternating nonnegative least squares for aNCPD

Problem:
𝑎𝑟𝑔𝑚𝑖𝑛

𝑎𝑞≥0,𝑏𝑞≥0,𝑐𝑞≥0
‖𝒯 − ∑𝑟

𝑞=1 𝑎𝑞 ⊗ 𝑏𝑞 ⊗ 𝑐𝑞‖2
𝐹

Equivalent problem:
𝑎𝑟𝑔𝑚𝑖𝑛

𝐴≥0,𝐵≥0,𝐶≥0
‖𝑇[1] − 𝐴(𝐵 ⊙ 𝐶)𝑇‖2

𝐹

where 𝑇[1] is an unfolding of 𝒯 and ⊙ is the Khatri Rao product and 𝐴 = [𝑎1, … , 𝑎𝑟].

The ANLS algorithm (or any typicaly BCD algorithm)
loop until convergence:

• Update 𝐴 using NNLS(𝑇[1], 𝐵 ⊙ 𝐶)
• Update 𝐵 using NNLS(𝑇[2], 𝐴 ⊙ 𝐵)
• Update 𝐶 using NNLS(𝑇[3], 𝐴 ⊙ 𝐶)
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Reminder 2: NonNegative Least Squares

U update problem: NNLS
𝑎𝑟𝑔𝑚𝑖𝑛

𝑋≥0
‖𝑌 − 𝐴𝑋‖2

𝐹

Convex!

Algorithms:
• Active set [Lawson Hanson 1974, Bro 1997]
• Hierarchical Alternating Least Squares (HALS)
• Block Principal Pivoting [Kim Park 2011]
• Any proximal gradient method

Note: HALS is also a BCD algorithm.
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Reminder 3: Nesterov extrapolation for convex optimization

Given a (strongly) convex differentiable form 𝑓, 𝐿 Lipschitz continuous, solve

𝑎𝑟𝑔𝑚𝑖𝑛
𝑥∈[0,1]𝑛

𝑓(𝑥)

Fast gradient algorithm (simplified)
• 𝜂 = 1/𝐿; initialize 𝑥; 𝑦 = 𝑥
• loop until convergence:

1 𝑥𝑜𝑙𝑑 = 𝑥
2 𝛽 = some formula(𝛽)
3 𝑥 = 𝑦 − 𝜂∇𝑦𝑓
4 𝑦 = 𝑥 + 𝛽(𝑥 − 𝑥𝑜𝑙𝑑)

Note: Step 3. can be replaced by a proximal
gradient step to account for constraints.

−𝜂∇𝑦𝑘
𝑓

𝛽Δ𝑥

𝑦𝑘

𝑥𝑘+1

𝑥𝑘

𝑦𝑘+1

Improves gradient descent convergence rate for strongly convex maps from 𝒪( 1
𝑘 ) to 𝒪( 1

𝑘2 ).



Contribution: Heuristic Extrapolation in BCD algorithms

Heuristic Extrapolation with Restart (HER)
• Introduce pairing variables
• Update a block, then extrapolate heuristically
• Perform restart if error increases

Different from
• using extrapolation in the updates
• using extrapolation after each outer loop

35/40
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Extrapolation for ANLS using HALS with restart: E-HALS

The E-HALS algorithm
• initialize 𝐴, 𝐵, 𝐶; 𝐴𝑦 = 𝐴, 𝐵𝑦 = 𝐵, 𝐶𝑦 = 𝐶
• loop until convergence:

1 𝐴𝑜𝑙𝑑 = 𝐴, 𝐵𝑜𝑙𝑑 = 𝐵; 𝐶𝑜𝑙𝑑 = 𝐶
2 Update 𝛽 with heuristic (next slide)

3 Update 𝐴 using NNLS(𝑇[1], 𝐵𝑦 ⊙ 𝐶𝑦)
4 Extrapolate 𝐴𝑦 = [𝐴 + 𝛽(𝐴 − 𝐴𝑜𝑙𝑑)]+

5 Update 𝐵 using NNLS(𝑇[2], 𝐴𝑦 ⊙ 𝐶𝑦)
6 Extrapolate 𝐵𝑦 = [𝐵 + 𝛽(𝐵 − 𝐵𝑜𝑙𝑑)]+

7 Update 𝐶 using NNLS(𝑇[3], 𝐴𝑦 ⊙ 𝐵𝑦)
8 Extrapolate 𝐶𝑦 = [𝐶 + 𝛽(𝐶 − 𝐶𝑜𝑙𝑑)]+

• if cost function increases, restart 𝐴𝑦 = 𝐴, 𝐵𝑦 = 𝐵, 𝐶𝑦 = 𝐶

At each iteration,
1 if error has decreased, increase 𝛽 up to a threshold 𝛽𝑚𝑎𝑥.
2 if error has increased, decrease 𝛽 and 𝛽𝑚𝑎𝑥.

In any case, 𝛽 ∈]0, 𝛽𝑚𝑎𝑥] with 𝛽𝑚𝑎𝑥 ≤ 1.



37/40

Experimental Results: setup

Balanced dimensions, ill-conditioned factors
• 𝑟 = 10
• 𝐼 = 𝐽 = 𝐾 = 50
• Uniform 𝐴, 𝐵, 𝐶
• 𝑎1 = 0.01𝑎1 + 0.99𝑎2

Difficulty:

Unbalanced dimensions, ill-conditioned factors
• 𝑟 = 12
• 𝐼 = 150
• 𝐽 = 103

• 𝐾 = 35
• Uniform 𝐴, 𝐵, 𝐶
• 𝑎1 = 0.01𝑎1 + 0.99𝑎2

We test with HALS and ADMM nnls solvers, more in the paper!
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Plots
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Figure: Convergence of algorithms : A-HALS and AO-ADMM without HER (solid purple) and with HER
(dotted orange). Balanced dimensions, ill-conditionned factors
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A few other extrapolation methods
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Figure: Comparing AHALS with different acceleration frameworks on synthetic datasets
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My ongoing research projects

LoRAiA (ANR JCJC)
Semi-supervision and Tensors:

• Dictionaries/sparse coding
• Optimal Transport

with efficient
implementations/algorithms!

Automatic Transcription
With semi-supervision and NMF.

Tensoptly (Inria)
Tensorly optimization layer:

• Constrained models
• Faster algorithms
• Customization

Music Segmentation
PhD of Axel Marmoret.

Sparse/Fast Optimization
Long-term collaboration with N.
Gillis (UMONS).

Multimodality
Long-term collaboration with E.
Acar (SimulaMet).

Thank you for your attention
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