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Roadmap

1 An introduction to nonnegative low-rank approximations

2 Nonnegative Tucker decomposition of music for automatic segmentation

3 Algorithms for constrained linearly coupled factorizations
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Spectral Unmixing

• Each pixel is a mixture of various materials.
• Each material has a unique spectral response.

Credits for illustrations: Veganzones(left) and Bioucas(right)
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Nonnegative Matrix Factorization for spectral unmixing
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Another example: Automatic Transcription

(Nonnegative) Low-rank approximation techniques are pattern mining tools!
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Modeling Spectral unmixing

One material 𝑘 has separable intensity:

𝑋𝑘(𝜆, 𝑥, 𝑦) = 𝑤𝑘(𝜆)ℎ𝑘(𝑥, 𝑦)

where 𝑤𝑘 is a spectrum characteristic to material
𝑘, and ℎ𝑘 is its abundance map.

≈𝑋 ≥ 0 𝑊 ≥ 0

𝐻 ≥ 0

Therefore, for an image 𝑀 with 𝑟 materials,

𝑋(𝜆, 𝑥, 𝑦) =
𝑟

∑
𝑘=1

𝑋𝑘(𝜆, 𝑥, 𝑦) =
𝑟

∑
𝑘=1

𝑤𝑘(𝜆)ℎ𝑘(𝑥, 𝑦)

This means the measurement matrix 𝑋𝑖,𝑗 = 𝑋(𝜆𝑖, pixel𝑗) is low rank!

Nonnegative matrix factorization

Find 𝑊, 𝐻 in argmin
𝑊≥0,𝐻≥0

‖𝑋 −
𝑟

∑
𝑘=1

𝑤𝑘ℎ𝑡
𝑘‖2

𝐹

where 𝑋𝑖,𝑗 = 𝑋(𝜆𝑖, [𝑥 ⊗𝐾 𝑦]𝑗, ) is the vectorized hyperspectral image.
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Matrix and Tensor rank

What are tensors?

tensor

simplest

𝑓(𝑥, 𝑦, 𝑧, 𝑡, … )

sample

𝒯

rank one tensor

𝑎 ⊗ 𝑏 ⊗ 𝑐

Definition: (nonnegative) rank-one matrix / tensor
A tensor 𝒯𝑖𝑗𝑘 ∈ ℝ𝐼×𝐽×𝐾 is said to be a [decomposable] [separable] [simple] [rank-one] tensor iff there
exist 𝑎 ∈ ℝ𝐼

(+), 𝑏 ∈ ℝ𝐽
(+), 𝑐 ∈ ℝ𝐾

(+) so that
𝒯𝑖𝑗𝑘 = 𝑎𝑖𝑏𝑗𝑐𝑘

or equivalently,
𝒯 = 𝑎 ⊗ 𝑏 ⊗ 𝑐

where ⊗ is a multiway equivalent of the exterior product 𝑎 ⊗ 𝑏 = 𝑎𝑏𝑡.
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ALL tensor decomposition models are based on separability
Canonycal Polyadic Decomposition (CPD):

𝒯 =
𝑟

∑
𝑘=1

𝑎𝑘 ⊗ 𝑏𝑘 ⊗ 𝑐𝑘
=

𝒯 =

+ ⋯ +

𝑎1 ⊗ 𝑏1 ⊗ 𝑐1 + ⋯ + 𝑎𝑟 ⊗ 𝑏𝑟 ⊗ 𝑐𝑟
Tucker Decomposition:

𝒯 =
𝑟1,𝑟2,𝑟3

∑
𝑘1,𝑘2,𝑘3=1

𝑔𝑘1𝑘2𝑘3
𝑎𝑘1

⊗ 𝑏𝑘2
⊗ 𝑐𝑘3

≈

𝒯 ≈ (𝐴 ⊗ 𝐵 ⊗ 𝐶) 𝒢

Definition: tensor rank

rank(𝒯) = min{𝑟 | 𝒯 =
𝑟

∑
𝑘=1

𝑎𝑘 ⊗ 𝑏𝑘 ⊗ 𝑐𝑘}

Tensor CP rank coincides with matrix “usual” rank!



9/32

Making use of low-rank representations

Let 𝐴 = [𝑎1, 𝑎2, … , 𝑎𝑟], 𝐵 and 𝐶 similarly built.

Uniqueness / Pattern mining
• CPD: Under mild conditions the CPD is essentially unique (i.e.) the rank-one terms are unique.
• NMF: Quite complicated, but in general requires additional regularizations.

This means we can interpret the rank-one terms 𝑎𝑘, 𝑏𝑘, 𝑐𝑘
→ Source Separation!

Compression
• The CPD involves 𝑟(𝐼 + 𝐽 + 𝐾 − 2) free parameters, while 𝒯 contains 𝐼𝐽𝐾 entries.
• The NMF involves 𝑟(𝐼 + 𝐽 − 1) free parameters, while 𝑋 has 𝐼𝐽 entries.

If the rank is small, this means huge compression/dimentionality reduction!
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The landscape of research on low-rank approximations
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Computing LRA: an inverse problem

Low-rank 𝑟 approximate NCPD
Given a tensor 𝒯, find tensor 𝒢∗ = ∑𝑟

𝑘=1 𝑎𝑘 ⊗ 𝑏𝑘 ⊗ 𝑐𝑘 that minimizes

𝜂(𝐴, 𝐵, 𝐶) = ‖𝒯 −
𝑟

∑
𝑘=1

𝑎𝑘 ⊗ 𝑏𝑘 ⊗ 𝑐𝑘‖2
𝐹 so that 𝑎𝑘 ≥ 0, 𝑏𝑘 ≥ 0, 𝑐𝑘 ≥ 0

• Nonconvex, but convex w.r.t. each mode.
• The minimum is always attained (coercivity)!

My favorite class of algorithms to solve aNCPD: block-coordinate descent!

argmin
𝑎1,…,𝑎𝑟

‖𝒯 −
𝑟

∑
𝑘=1

𝑎𝑘 ⊗ 𝑏𝑘 ⊗ 𝑐𝑘‖2
𝐹 so that 𝑎𝑘 ≥ 0

is convex. It is a (Nonnegative) Least Squares problem, good algorithms are known.
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My ongoing research projects

LoRAiA (ANR JCJC)
Semi-supervision and Tensors:

• Dictionaries/sparse coding
• Optimal Transport

with efficient
implementations/algorithms!

Automatic Transcription
With semi-supervision and NMF.

Tensoptly (Inria)
Tensorly optimization layer:

• Constrained models
• Faster algorithms
• Customization

Music Segmentation
PhD of Axel Marmoret.

Sparse/Fast Optimization
Long-term collaboration with N.
Gillis (UMONS).

Multimodality
Long-term collaboration with E.
Acar (SimulaMet).

A common trait: nonnegativity!
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Roadmap

1 An introduction to tensor methods

2 Nonnegative Tucker decomposition of music for automatic segmentation

3 Algorithms for constrained linearly coupled factorizations
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The NTD project in a glance



15/32

A team effort

Axel Marmoret Nancy Bertin Frederic Bimbot Caglayan Tuna
Doctorant UR1 CR CNRS DR CNRS Ingénieur Inria

Axel Marmoret, Jérémy Cohen, Nancy Bertin, Frédéric Bimbot. Uncovering Audio Patterns in Music with
Nonnegative Tucker Decomposition for Structural Segmentation. ISMIR 2020 - 21st International Society
for Music Information Retrieval, Oct 2020, Montréal (Online), Canada. pp.1-7
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Segmenting a song?
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A word on the state-of-the-art
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Our idea: a chromagram tensor…
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…decomposed to find redundancies!

Approximate Nonnegative Tucker Decomposition 𝒳 ≈ (𝑊 ⊗ 𝐻 ⊗ 𝑄)𝒢
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Back to segmentation



21/32

State-of-the-art unsupervised results!
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Algorithm 𝑃0.5 𝑅0.5 𝐹0.5 𝑃3 𝑅3 𝐹3
NTD, with “oracle ranks” for each song 67.1% 78.2% 71.5% 78.5% 90.2% 83.1%
Neural Networks[Grill2015] 80.4% 62.7% 69.7% 91.9% 71.1% 79.3%

Table: Averaged segmentation scores in the “oracle ranks” condition, compared to the current state-of-the-art
(non-blind) method.
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An algorithmic road
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An algorithmic road
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Roadmap

1 An introduction to tensor methods

2 Nonnegative Tucker decomposition of music for automatic segmentation

3 Algorithms for constrained linearly coupled factorizations
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Another team effort

Carla Schenker Marie Roald Evrim Acar
PhD Student PhD Student Senior Researcher

SimulaMet, Oslo

C. Schenker, J. E. Cohen, E. Acar, ”A Flexible Optimization Framework for Regularized
Matrix-Tensor Factorizations with Linear Couplings”, IEEE Journal on Selected Topics in Signal
Processing, 2020.
M. Roald, C. Schenker, J. E. Cohen, Evrim Acar, ”PARAFAC2 AO-ADMM: Constraints in all
modes”, EUSIPCO2021
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Hyperspectral super-resolution: a motivating example

• High spatial resolution
• Low spectral resolution

• Low spatial resolution
• High spectral resolution
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Hyperspectral super-resolution in equations

argmin
𝑊ℎ≥0,𝐻ℎ≥0,𝑊𝑚≥0,𝐻𝑚≥0

‖𝑋ℎ − 𝑊ℎ𝐻ℎ‖2
𝐹 + ‖𝑋𝑚 − 𝑊𝑚𝐻𝑚‖2

𝐹 such that 𝑅𝑊ℎ = 𝑊𝑚, 𝐻ℎ = 𝑆𝐻𝑚 (1)

In fact we deal with a more general problem:
• Inputs are low-rank tensors, there can be more than two.
• Constraints are versatile (l1 norm, smoothness, total variation…).
• Loss functions need not be Euclidean.
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The proposed AO-ADMM framework

ADMM algorithm for each mode
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What is this good for?

Also used in
• Super-resolution in hyperspectral imaging (mostly remote sensing)
• Chemometrics/Metabolomics: Bypassing time-retention shifts in GC-MS
• Neuro-imaging: EEG and Oculometry
• Many more…
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Chemometrics: Underlying design and patterns captured
accurately!

Mixtures prepared using five
amino-acids/chemicals

• Val-Try-Val
• Trp - Gly
• Phe
• Maltoheptaose
• Propanol
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Conclusion: Low-rank approximations are versatile

• Vector and Matrix dataset can be
tensorized (cf Audio project) and
processed with tensor
decompositions.

• Tensor dataset can be matricized
and treated with matrix
factorization (cf Hyperspectral
Imaging)

• Domain-specific constraints can be
accounted for with some work on
the algorithms (cf Data fusion using
AO-ADMM)
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My ongoing research projects

LoRAiA (ANR JCJC)
Semi-supervision and Tensors:

• Dictionaries/sparse coding
• Optimal Transport

with efficient
implementations/algorithms!

Automatic Transcription
With semi-supervision and NMF.

Tensoptly (Inria)
Tensorly optimization layer:

• Constrained models
• Faster algorithms
• Customization

Music Segmentation
PhD of Axel Marmoret.

Sparse/Fast Optimization
Long-term collaboration with N.
Gillis (UMONS).

Multimodality
Long-term collaboration with E.
Acar (SimulaMet).

Thank you for your attention
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