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0 An introduction to nonnegative low-rank approximations
o Nonnegative Tucker decomposition of music for automatic segmentation

e Algorithms for constrained linearly coupled factorizations
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Spectral Unmixing

® Each pixel is a mixture of various materials.

® Each material has a unique spectral response.
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Credits for illustrations: Veganzones(left) and Bioucas(right)
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Nonnegative Matrix Factorization for

r

spectral unmixing
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Another example: Automatic Transcription
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(Nonnegative) Low-rank approximation techniques are pattern mining tools!
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Modeling Spectral unmixing
One material k has separable intensity:

XA m,y) = wp(Mhg(2,9)

where wy,, is a spectrum characteristic to material
k, and hy, is its abundance map.

Therefore, for an image M with r materials,
X\ 2,y) Zxk (A z,y) Z Wy, (A)hy (2, )

This means the measurement matrix X, ; = X(\,, pixelj) is low rank!
Nonnegative matrix factorization

Find W, H in argmin |X — Zwkh 2
W>0,H>0 et

where X; . = X(\;, [* ® yl;,) is the vectorized hyperspectral image. -



Matrix and Tensor rank

What are tensors?

tensor rank one tensor
) /
sample simplest
— — |
f(mvyaz>t>'“) :T a®b®c

Definition: (nonnegative) rank-one matrix / tensor

A tensor T, € R™7*K is said to be a [decomposable] [separable] [simple] [rank-one] tensor iff there

exist a € [R{Jr),b € R{+),C € [R{i) so that

fTijk = aibjck
or equivalently,
T=a®b®c
where ® is a multiway equivalent of the exterior product a ® b = ab?.
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ALL tensor decomposition models are based on separability

Canonycal Polyadic Decomposition (CPD):

T=>a,0b,Qc¢;
k=1

T = 190 + - + a.®b.®c,
Tucker Decomposition:

T1,72,T3

T = 2 Gkhoks U, @i, ®Cp,
by Fgrkg=1

ND-’
7 =~ (A ® B ®C0) g

Definition: tensor rank

rank(7) = min{r | T = Zak ® b, ®ci}
k=1

Tensor CP rank coincides with matrix “usual” rank! 8/32



Making use of low-rank representations

Let A = [ay,ay,...,a,], B and C similarly built.

Uniqueness / Pattern mining

® CPD: Under mild conditions the CPD is essentially unique (i.e.) the rank-one terms are unique.
® NMF: Quite complicated, but in general requires additional regularizations.
This means we can interpret the rank-one terms a;, by, ¢,

— Source Separation!

Compression
® The CPD involves r(I 4+ J + K — 2) free parameters, while 7 contains IJK entries.
® The NMF involves r(I + J — 1) free parameters, while X has I.J entries.

If the rank is small, this means huge compression/dimentionality reduction!
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The landscape of research on low-rank approximations
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Computing LRA: an inverse problem

Low-rank 7 approximate NCPD

r

Given a tensor 7, find tensor §* =3, a; ® b, ® ¢;, that minimizes

n(A,B,C) = ”:T — Zak, ®bk ®Ck”§;~ so that ag, > O7bk > 07Ck: >0
k=1

Nonconvex, but convex w.r.t. each mode.

® The minimum is always attained (coercivity)!

My favorite class of algorithms to solve aNCPD: block-coordinate descent!

T
argmin ||T — Zak ® b, ® c||% so that a;, >0

A,y =1

is convex. It is a (Nonnegative) Least Squares problem, good algorithms are known.
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My ongoing research projects

LoRAIA (ANR JCJC) Tensoptly (Inria) Music Segmentation
Semi-supervision and Tensors: Tensorly optimization layer: PhD of Axel Marmoret.
® Dictionaries/sparse coding ® Constrained models —
® Optimal Transport ® Faster algorithms Sparse/Fast Optimization
with efficient ® Customization Long-term collaboration with N.
implementations/algorithms! Gillis (UMONS).
Multimodality

Automatic Transcription
Long-term collaboration with E.

With semi-supervision and NMF.
Acar (SimulaMet).

A common trait: nonnegativity!
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0 An introduction to tensor methods
o Nonnegative Tucker decomposition of music for automatic segmentation

e Algorithms for constrained linearly coupled factorizations
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The NTD project in a glance
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Axel Marmoret Nancy Bertin Frederic Bimbot Caglayan Tuna
Doctorant UR1 CR CNRS DR CNRS Ingénieur Inria

O= Axel Marmoret, Jérémy Cohen, Nancy Bertin, Frédéric Bimbot. Uncovering Audio Patterns in Music with
Nonnegative Tucker Decomposition for Structural Segmentation. ISMIR 2020 - 21st International Society
for Music Information Retrieval, Oct 2020, Montréal (Online), Canada. pp.1-7
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Segmenting a song?
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on the state-of-the-a

Supervised

Signal Autosimilarity + post-processing Deep learning
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Our idea: a chromagram tensor...
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...decomposed to find redundancies!

Approximate Nonnegative Tucker Decomposition XI~WeH®Q)S

=
X e REXT*B W e RE*FF H e RT*RT_Q e RB*Re g ¢ RRF<RT>Re
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Back to segmentation
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State-of-the-art unsupervised results!

F measure, with 0.5 seconds tolerance F measure, with 3 seconds tolerance
Original 70 - Original

50 - I Re-aligned on downbeats I Re-aligned on downbeats
. B Our method __60 - B Our method
£ 40 - £ 50 -
@ @
o IS
Sa0- 8407
e e
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S 20 - 3
€ €90 -
w w

10 - 10 -

0 - I 0 - I I

Foote's CNMF Spectral Foote's CNMF Spectral
Novelty Clustering Novelty Clustering
Algorithm Fys Ry 5 Fos Py R, Ey
NTD, with “oracle ranks” for each song || 67.1% 78.2% 71.5% | 78.5% 90.2% 83.1%
Neural Networks[Grill2015] 80.4% 62.7% 69.7% | 91.9% 71.1% 79.3%

Table: Averaged segmentation scores in the “oracle ranks” condition, compared to the current state-of-the-art
(non-blind) method.
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An algorithmic road
e Nicolas
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An algorithmic road

nnfac T Lreia P\ Tensorly

1[[ O PyTorch
TensorFlow
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0 An introduction to tensor methods
9 Nonnegative Tucker decomposition of music for automatic segmentation

e Algorithms for constrained linearly coupled factorizations
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Another team effort

Carla Schenker Marie Roald Evrim Acar
PhD Student PhD Student Senior Researcher

SimulaMet, Oslo

= C. Schenker, J. E. Cohen, E. Acar, "A Flexible Optimization Framework for Regularized
Matrix-Tensor Factorizations with Linear Couplings”, IEEE Journal on Selected Topics in Signal
Processing, 2020.

= M. Roald, C. Schenker, J. E. Cohen, Evrim Acar, "PARAFAC2 AO-ADMM: Constraints in all
modes”, EUSIPC02021
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Hyperspectral super-resolution: a motivating example

® High spatial resolution ® Low spatial resolution

® Low spectral resolution ® High spectral resolution
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Hyperspectral super-resolution in equations

argmin I1X, — W, H,|%+ | X, — W,,H,,|% such that RW, =W,,, H, = SH,, (1)
w,>0,H,,>0,W,,>0,H,,>0
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Hyperspectral super-resolution in equations

argmin I1X, — W, H,|%+ | X, — W,,H,,|% such that RW, =W,,, H, = SH,, (1)
w,>0,H,,>0,W,,>0,H,,>0

e 5 5 B
Low-rank approximations

\(N MFs)

J

27/32



Hyperspectral super-resolution in equations

argmin I1X, — W, H,|%+ | X, — W,,H,,|% such that RW, =W,,, H, = SH,, (1)
w,>0,H,,>0,W,,>0,H,,>0
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Hyperspectral super-resolution in equations

argmin I1X, — W, H,|%+ | X, — W,,H,,|% such that RW, =W,,, H, = SH,, (1)
W;,>0,H,,>0,W,,>0,H,,>0

m=

Spectral reduction \

‘Low-rank approximations

(NMFs) \: Blur and downsampling \

In fact we deal with a more general problem:

® Inputs are low-rank tensors, there can be more than two.
® Constraints are versatile (11 norm, smoothness, total variation...).

® | oss functions need not be Euclidean.
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The proposed AO-ADMM framework
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ADMM algorithm for each mode
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What is this good for?

Neuroimaging
Metabolomics

‘ ‘ fMRI (Functional Magnetic

Resonance Imaging)

LC-MS EEM (Fluorescence EEG (Electroencephalography)
(Liquid Chromatography- Spectroscopy) NMR (Nuclear
Mass Spectrometry) Magnetic Resonance)

S
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samples
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samples

chemical
& shifts

. time samples time samples

excitation

Also used in

® Super-resolution in hyperspectral imaging (mostly remote sensing)

® Chemometrics/Metabolomics: Bypassing time-retention shifts in GC-MS
® Neuro-imaging: EEG and Oculometry
L]

Many more... 29/32



Chemometrics: Underlying design and patterns captured

accurately!

Mixtures prepared using five
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Conclusion: Low-rank approximations are versatile

® Vector and Matrix dataset can be
tensorized (cf Audio project) and
processed with tensor
decompositions.

® Tensor dataset can be matricized
and treated with matrix
factorization (cf Hyperspectral
Imaging)

® Domain-specific constraints can be
accounted for with some work on

the algorithms (cf Data fusion using
AO-ADMM)

INTERPRETABILITY FLEXIBILITY
42) RS
ald - Data fusion,

multimodality

©

- Transfert learning

Machine
Learning

COMPUTATION
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My ongoing research projects

LoRAIA (ANR JCJC) Tensoptly (Inria) Music Segmentation
Semi-supervision and Tensors: Tensorly optimization layer: PhD of Axel Marmoret.
® Dictionaries/sparse coding ® Constrained models —
® Optimal Transport ® Faster algorithms Sparse/Fast Optimization
il cTRehamt: 0 Cusiembziion Long-term collaboration with N.
implementations/algorithms! Gillis (UMONS).
Multimodality

Automatic Transcription
Long-term collaboration with E.

With semi-supervision and NMF.
Acar (SimulaMet).

Thank you for your attention
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