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Roadmap

• Nonnegative Tucker 101

• An illustration of NTD to Music Information Retrieval

• Numerical optimization methods for NTD

• Some theory on NTD and open questions

• Off topic: Tensorly
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Matrices/Tensors as multiway arrays

Let T a tensor in Rn1×n2×...×nd

modes: indexes of the tensor from 1 to d . e.g. i is the first mode index.

order: d. e.g. the tensor below is a third order tensor.
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Examples of tensors in data science

Tensor as Raw Data
Excitation Emission

Matrices

Tensor as Raw Data
Hyperspectral Images

[courtesy of J Chanussot]

Tensor as Processed Data
Tensor spectrogram

=

[x⊗x⊗x]i,j,k

xi
xj

xk

Tensor as Data Properties
Data Moments

Tensor as Model Parameters
Convolutional Neural Networks

[figure from commons.wikimedia.org]
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Tensors and dimensionality reduction

Number of parameters:

O(nd)

+ . . .+

O(dnr) O(dnr + rd) O(dnr 2)

Consequently, tensor models can be used for:

Inverse Problems

• Matrix-Tensor completion

• Blind Source separation

• Denoising, deconvolution

• Phase retrieval

• . . .

Compression, Low Complexity Model

• Big Data

• Data mining

• Neural Networks

• Partial Differential Equations

• . . .
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What is Tucker Decomposition

The Tucker format (3d order)

Input: Data tensor T , core dimensions r1, r2, r3

Parameters: W ∈ Rn1×r1 , H ∈ Rn2×r2 , Q ∈ Rn3×r3 and G ∈ Rr1×r2×r3

Tijk =

r1∑
q1

r2∑
q2

r3∑
q3

Wir1Hjr2Qkr3Gr1r2r3

T = (W ⊗ H ⊗ Q)G

=

W

H

QG
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Why Nonnegativity in Tucker decomposition, the NMF case

M = WH = WPP−1H

but if W ≥ 0 and H ≥ 0, sometimes

WP ≥ 0 and P−1H ≥ 0 =⇒ P = ΠΣ

with Π a permutation matrix and Σ a positive diagonal matrix.

A collection of sufficient conditions for NMF identifiability

• Donoho2003: Separability

• Huang2013: sufficiently scattered condition

• Miao2007, Fu2015/Lin2015: Minimum Volume [not really a condition]
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(approximate) Nonnegative Tucker Decomposition

≈ ≥ 0

≥ 0 ≥ 0 ≥ 0

T ≈ U ×1 V ×2 W ×3 G

In the remainder of this talk, about NTD

• Can we interpret NTD on an example → Patterns in music

• How to compute NTD

• A few properties around CANDELINC and identifiability
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Segmenting a song?
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A team effort

Axel Marmoret Nancy Bertin Frederic Bimbot Caglayan Tuna
PhD student CR CNRS DR CNRS Inria Engineer

Axel Marmoret, Jérémy Cohen, Nancy Bertin, Frédéric Bimbot. Uncovering Audio Patterns in Music with
Nonnegative Tucker Decomposition for Structural Segmentation. ISMIR 2020 - 21st International Society
for Music Information Retrieval, Oct 2020, Montréal (Online), Canada. pp.1-7
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A word on the state-of-the-art
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Our idea: a chromagram tensor. . .
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. . . decomposed to find redundancies!

Approximate Nonnegative Tucker Decomposition X ≈W ×1 H ×2 Q ×3 G
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bonus: NTD extracts patterns!

= x x



16/29

Back to segmentation



17/29

State-of-the-art unsupervised results!
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Algorithm P0.5 R0.5 F0.5 P3 R3 F3

NTD, with “oracle ranks” for each song 67.1% 78.2% 71.5% 78.5% 90.2% 83.1%
Neural Networks[Grill2015] 80.4% 62.7% 69.7% 91.9% 71.1% 79.3%

Table: Averaged segmentation scores in the “oracle ranks” condition, compared to the current state-of-the-art
(non-blind) method.
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An algorithmic road
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An algorithmic road
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Back to NMF algorithms

NMF and numerical optimization

argmin
W≥0,H≥0

D(M,WH)

Usual loss functions:

• Frobenius loss D(M,WH) = ‖M −WH‖2
F

• Kullback-Leibler D(M,WH) =
∑

ij KL(Mij , [WH]ij) =
∑

ij Mij log(
Mij

[WH]ij
) + [WH]ij −Mij

• Beta-Divergence

• More exotic: Wasserstein distance [Rolet2016, Varol2019]0, `1 norm [Gillis2018] . . .

A few remarks:
• Problem non-convex in general for (W ,H) but “solvable” for fixed W or H.
• Beta-divergence loss is separable in columns of H (or rows of W ).

This calls for block-coordinate descent methods:
• Hierarchical Alternating Least Squares (`2)
• Alternating Multiplicative Updates
• Alternating Proximal Gradient
• . . .
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NTD algorithms mimic NMF algorithms

NTD and numerical optimization

argmin
W≥0,H≥0,Q≥0,G≥0

D(M, (W ⊗ H ⊗ Q)G)

Usual loss functions:

• Frobenius loss D(M, (W ⊗ H ⊗ Q)G) = ‖M − (W ⊗ H ⊗ Q)G‖2
F

• Kullback-Leibler D(M, (W ⊗ H ⊗ Q)G) =
∑

ijk KL(Mijk , [(W ⊗ H ⊗ Q)G]ijk)

A few key points:

• The core update is a “vector” update (not matrix!)

• One must pay attention to update rules, to avoid computing big intermediate representations and
Kronecker products.

Existing algorithms (sample):

• HALS + Proximal Gradient for G
• Alternating MU
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What about sparsity?

In the first NTD paper [Morup 2008], sparsity was already considered.

Sparsity?

Most papers impose sparsity with `1 norm.
Problem: Scale ambiguity!! For µ > 1,

‖M −WH‖2
F + λ‖W ‖1 > ‖M −

1

µ
WµH‖2

F +
λ

µ
‖W ‖1 = ‖M −WH‖2

F + λ′‖W ‖1

with λ′ < λ.

• Several work around for NMF
• Constrain W on the hypersphere [LeRoux2015]
• Use a more complex sparsity metric [Hoyer2002/2004]
• Use `2 on W [??][RoaldTBA] How to use in MU?

• Not so many are described (?) for tensor decompositions.

Work in Progress: paper and codes for NTD with beta-divs, sparsity, acceleration!
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NTD identifiability

The big open question: under which conditions is NTD identifiable/essentially unique?

A few empirical observations:

• NTD factors and core can be recovered when they are very sparse, even without explicit sparsity
imposed (sufficiently scattered??)

• Imposing sparsity helps a lot in recovering the true factors and core.

What about minimum volume? Separability?

An existing result in [Zhou/Cichocki 2014] links NTD identifiability to NMF identifiability of the
unfoldings.
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NTD for nnCANDELINC [C.2017]

CANDELINC: Tucker format then PARAFAC

≈

T ≈ (W ⊗ H ⊗ Q) G

≈

G ≈ (AG ⊗ BG ⊗ CG) Ir

Problems with nnCANDELINC

• Rank of core might increase

• Factors of T might not be recovered

• NTD is hard to compute anyway

• Does not work in (my) pratice

a1

a2

××

×
×

×
×

×
× ×T1 i

u1

u2
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NTD for nnCANDELINC [Skau DeSantis 2022]

A few interesting concepts/facts:

• Nonnegative multilinear ranks
rank+(T[n])

• Intersection of tensor cones and tensor product don’t commute

• Minimal NTD has dimension equal to nonnegative multilinear ranks (may not exist)

• Canonical NTD when dimensions equal to nonnegative ranks of factors for a unique CPD tensor.

Proposition

Suppose T admits a unique CPD.

• Then there exists a canonical NTD which preserves its nonnegative rank.

• For any canonical NTD that preserves the rank, its factors have full nonnegative rank.

Core problem: selecting the right canonical NTD.
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Conclusion

Similarities between NMF and NTD

• Numerical Optimization

• Applications, to some extent

• Decomposition of data into a sum of parts

• Empirically, identifiability

Some major differences

• NTD theory requires multilinear algebra

• Almost no identifiability results available for NTD

• Connection between NTD and polytopes?

• NTD is hard to understand

• Few dedicated algorithms, e.g. efficient initialization
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Tensorly ad 1: What is Tensorly

Open source and collaborative Python toolbox for tensors

Code features:

• User guide, API, Examples at tensorly.org

• Automatic unit tests

• Back-end transparent for users and devs

• Issues/Pull Requests with reasonable response time

Contents:

• Tensor objects from Numpy, Pytorch, Tensorflow. . .

• Tensor manipulations (reshape, permute and so)

• Some tensor decompositions (CP, constrained CP, Generalized CP, Tucker, Nonnegative Tucker,
TT, PARAFAC2, CMTF)

• Dataset loaders, visualisation tools

tensorly.org
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Tensorly ad 2: Tensoptly project

• New algorithms and models
• Nonnegative/Sparse/User-defined constraint

using AOADMM.
• User-defined loss using GCP.

• Contributions tested, documented, explained
(Notebooks)

Where to contribute

• Backend: efficient contractions support
(TTMs, TTVs, MTTKRPs . . .)

• Algorithms: better CPD algorithms than ALS!

• Visualisation: How to look at tensors? Tucker
models?

• Benchmarking with Benchopt?



Thank you for your attention!!
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