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Matrices/Tensors as multiway arrays

Let T a tensor in Rn1×n2×...×nd

modes: indices of the tensor from 1 to d . e.g. i is the first
mode index.
order: d. e.g. the tensor below is a third order tensor.
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Examples of tensors in data science

Tensor as Raw
Data Excitation
Emission Matrices

Tensor as Raw
Data

Hyperspectral
Images

[courtesy of J Chanussot]

Tensor as
Processed Data

Tensor
spectrogram

Tensor as Data Properties
Data Moments Tensor as Model Parameters

Convolutional Neural Networks
[figure from commons.wikimedia.org]
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Tensors and dimensionality reduction

Number of parameters:

O(nd)
+. . .+

O(dnr) O(dnr + rd) O(dnr2)

with r the number of components.

Inverse Problems

I Matrix-Tensor completion
I Blind Source separation
I Denoising, deconvolution
I Phase retrieval
I . . .

Compression, Low Complexity

I Data mining
I Neural Networks
I Partial Differential

Equations
I . . .
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Interpretability and constraints

Constraints help with interpretation by
I enhancing uniqueness.
I improving the quality of the solution.
I sometimes, making the optimization problem easier.

Examples: Nonnegative Matrix/Tucker Factorization,
(Convolutional) Dictionary Learning, Principal Component
Analysis. . .
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Challenges for regularized tensor decompositions
Regularized Canonical Polyadic Decomposition (CPD):

argmin
A,B,C∈Rni×r

‖T −
r∑

q=1
A[:, q]B[:, q]C [:, q]‖2F +gA(A)+gB(B)+gC (C)

I nonsmooth
I nonconvex

Nonnegative CPD gA = gB = gC = ηR+

Sparse CPD gA = gB = gC = ‖ · ‖1

Challenges
I Numerical Optimization
I Efficient implementations
I Identifiability properties
I Multimodality
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Program of the Minisymposium
co-organized with Daniel Dunlavy and Axel Marmoret.

1. Wednesday 13:20

Jeremy Cohen (Implicit balancing in penalized LRA)

Jamie Haddock (Hierarchical and neural tensor factorizations)

Derek DeSantis (Nonnegative canonical tensor decompositions with linear constraints: nnCANDELINC)

Clémence Prévost (Joint Data Fusion and Blind Unmixing using Nonnegative Tensor Decomposition)

2. Wednesday 15:30

Nico Vervliet (A quadratically convergent proximal algorithm for nonnegative tensor decomposition)

Carla Schenker (PARAFAC2-based coupled matrix and tensor factorization with constraints)

Daniel Dunlavy (Constrained Tucker Decompositions and Conservation Principles for Direct Numerical

Simulation Data Compression)

Rafal Zdunek (Incremental Nonnegative Tucker Decomposition with Block-coordinate Descent and

Recursive Approaches)
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Program of the Minisymposium
co-organized with Daniel Dunlavy and Axel Marmoret.

3. Friday 10:40

Koby Hayashi (Speeding up Nonnegative Low-rank Approximations with Parallelism and Randomization)

Neriman Tockan (A probabilistic nonnegative tensor factorization method for tumor microenvironment

analysis)

Ruhui Jin (Scalable symmetric Tucker tensor decomposition)

Izabel Aguiar (A tensor factorization model of mulitlayer network interdependence)

Discuss with other participants, onsite and online! Ask questions!
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Implicit balancing in penalized low-rank
approximations
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Implicit regularization in matrix LRA
Let M some data matrix, and r a factorization rank.

argmin
W ,H∈Rni×r

‖M − WHT‖2F + λ
(
‖W ‖2F + ‖H‖2F

)
has balanced solutions ‖W ∗[:, q]‖2 = ‖H∗[:, q]‖2. Its solutions are
equivalent up to scaling to the solutions of

argmin
rank(Lq)=1

‖M −
∑
q≤r

Lq‖2F + α
∑
q≤r

‖Lq‖F

for some α > 0, which is a modified Group-LASSO [Srebro 2008].
Remarkably, this can be reformulated as

argmin
L∈Rn1×n2 ,rank(L)≤r

‖M − L‖2F + α‖L‖∗

Ridge penalties induce low-rank regularizations!

Also mentionned in [Uschmajew 2012] for CPD.
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Penalized CPD framework

argmin
A,B,C∈Rni×r

‖T −JA,B,CK‖2F+
r∑

q=1
gA(A[:, q])+gB(B[:, q])+gC (C [:, q])

where g are homogeneous functions of degree pA, pB, pC .

Observation
Since the CPD is scale invariant, solutions must minimize the scale
of the regularization terms!

For the q-th set of columns and fixed estimates A,B,C , the
optimal scaling may be computed as

argmin
λAλBλC=1

λpA
A gA(A[:, q]) + λpB

B gB(B[:, q]) + λpC
C gC (C [:, q])
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A little trick about means

Balancing occurs because of these two equivalent phenomena:

min
a≥0,b≥0

a + b such that ab = p (1)

for a given p ≥ 0 has solution a = b = √p.

max
a≥0,b≥0

ab such that a + b = s (2)

for a given s ≥ 0 has solution a = b = s
2 .

We can compute the optimal scaling in closed form easily!
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Regularization and scale invariance

Scale invariance has an implicit balancing effect!

∀q ≤ r , ‖W ∗[:, q]‖ ∝ ‖H∗[:, q]‖
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Some equivalent reformulations

Explicit Reg. Invariance Implicit Reg

`2(W )2 + `2(H)2 col. scale, rotation ‖
∑

q Lq‖∗ or
∑

q ‖Lq‖F

`p(W ) col. scale ill-posed
`1(W ) + `1(H) col. scale

∑
q

√
‖Lq‖1

`1(W )2 + `1(H)2 scale ‖W ⊗ H‖2
1∑

q `1(W [:, q])2 + `1(H[:, q])2 col. scale ‖L‖1

`1(W ) + `2(H)2 col. scale
∑

q

(
‖W [:, q]‖1‖H[:, q]‖2

2
) 2

3

`1(W ) +
∑

j `2(H[:, q]) col. scale
∑

q

(∑
j ‖Lq[j, :]‖2

)1/4∑
q `1(W [:, q])2 + `2(H)2 col. scale

∑
q

∑
j ‖Lq[j, :]‖2

Table: Lq = W [:, q]H[:, q]T
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Using rescaling in an optimization algorithm

Penalized LRA models may converge slowly to a local minimum
because the regularization terms are flat!

Idea
Explicitly normalize the columns of the factors to minimize the
penalization terms with respect to scaling.

The normalization formula for A with fixed B,C :

A[:, q]∗ =
(

β

pAgA(A[:, q])

)1/pA
A[:, q]

with β some known constant of A,B,C .
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Experiment setup
Comparing HALS (alternating algorithm) for nonnegative CPD
(nnCPD) with/without scaling at each outer iteration.

Model 1: Frobenius-regularized nnCPD

argmin
A,B,C∈Rni×r

+

‖T − JA,B,CK‖2F + λ
(
‖A‖2F + ‖B‖2F + ‖C‖2F

)

Model 2: nnCPD with sparse factor A

argmin
A,B,C∈Rni×r

+

‖T − JA,B,CK‖2F + λ
(
‖A‖1 + ‖B‖2F + ‖C‖2F

)

Settings: ni = 30, r = 4, r̂ = 6, Uniform factors, 30% sparsity for `1,
scaled init, grid on λ. 30 outer iterations (early stop).



17/20

Explicit normalization effect in tensor decomposition
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Work in Progress: Tucker decomposition

Adaptation for Tucker decomposition: Tensor Sinkhorn algorithm!
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Conclusions

I Constrained Tensor factorization models are unsupervised
learning techniques with interpretable outputs.

I Many practical and theoretical problems remain regarding
optimization algorithms.

I I discussed the effect of scale invariance on regularized
factorization problems.

Paper in progress, *French* version available for now.

Thank you for your attention!
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FMS
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